Surface-Enhanced Raman Scattering to Improve the Sensitivity of the MTT Assay

Walsh T.R., Gales A.C., Laxminarayan R., Dodd P.C. 2023. Antimicrobial resistance: Addressing a global threat to humanity. PLoS Med. 20 (7), e1004264.

Article  PubMed  PubMed Central  Google Scholar 

Ranjbar R., Alam M. 2024. Antimicrobial Resistance Collaborators 2022. 2023 Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Evidence-Based Nurs. 2023, ebnurs-2022-103540. https://doi.org/10.1136/ebnurs-2022-103540

O’Neill J. 2016. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. https://apo.org.au/node/63983

Klein E.Y., Van Boeckel T.P., Martinez E.M., Pant S., Gandra S., Levin S.A., Goossens H., Laxminarayan R. 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. U. S. A. 115 (15), E3463–E3470.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durand G.A., Raoult D., Dubourg G. 2019. Antibiotic discovery: History, methods and perspectives. Int. J. Antimicrob. Agents. 53 (4), 371–382.

Article  CAS  PubMed  Google Scholar 

de Kraker M.E.A., Lipsitch M. 2021. Burden of antimicrobial resistance: Compared to what? Epidemiol. Rev. 43 (1), 53–64.

Article  PubMed Central  Google Scholar 

Hanberger H., Walther S., Leone M., Barie P.S., Rello J., Lipman J., Marshall J.C., Anzueto A., Sakr Y., Pickkers P. 2011. Increased mortality associated with meticillin-resistant Staphylococcus aureus (MRSA) infection in the Intensive Care Unit: Results from the EPIC II study. Int. J. Antimicrob. Agents. 38 (4), 331–335.

Article  CAS  PubMed  Google Scholar 

Yang C.C., Sy C.L., Huang Y.C., Shie S.S., Shu J.C., Hsieh P.H., Hsiao C.H., Chen C.J. 2018. Risk factors of treatment failure and 30-day mortality in patients with bacteremia due to MRSA with reduced vancomycin susceptibility. Sci. Rep. 8 (1), 7868.

Article  PubMed  PubMed Central  Google Scholar 

Dellinger R.P., Levy M.M., Carlet J.M., Bion J., Parker M.M., Jaeschke R., Reinhart K., Angus D.C., Brun-Buisson C., Beale R. 2008. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 36 (1), 296–327.

Article  PubMed  Google Scholar 

Chen H.-C., Lin W.-L., Lin C.-C., Hsieh W.-H., Hsieh C.-H., Wu M.-H., Wu J.-Y., Lee C.-C. 2013. Outcome of inadequate empirical antibiotic therapy in emergency department patients with community-onset bloodstream infections J. Antimicrob. Chemother. 68 (4), 947–953.

Article  CAS  PubMed  Google Scholar 

Dickinson J.D., Kollef M.H. 2011. Early and adequate antibiotic therapy in the treatment of severe sepsis and septic shock. Curr. Infect. Dis. Rep. 13, 399–405.

Article  PubMed  Google Scholar 

Goneau L.W., Delport J., Langlois L., Poutanen S.M., Razvi H., Reid G., Burton J.P. 2020. Issues beyond resistance: inadequate antibiotic therapy and bacterial hypervirulence. FEMS Microbes. 1 (1), xtaa004.

Reller L.B., Weinstein M., Jorgensen J.H., Ferraro M.J. 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49 (11), 1749–1755.

Article  Google Scholar 

Khan Z.A., Siddiqui M.F., Park S. 2019. Current and emerging methods of antibiotic susceptibility testing. Diagnostics (Basel). 9 (2), 49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steingart K.R., Schiller I., Horne D.J., Pai M., Boehme C.C., Dendukuri N. 2014. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst. Rev. 2014 (1), CD009593.

Kumar P., Nagarajan A., Uchil P.D. 2018. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018 (6), pdb-prot095505.

Van Meerloo J., Kaspers G.J.L., Cloos J. 2011. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 237–245.

Article  Google Scholar 

Bahuguna A., Khan I., Bajpai V.K., Kang S.C. 2017. MTT assay to evaluate the cytotoxic potential of a drug. Bangl. J. Pharm. 12 (2), 115–118.

Google Scholar 

Tolosa L., Donato M.T., Gómez-Lechón M.J. 2015. General cytotoxicity assessment by means of the MTT assay. Methods Mol. Biol. 2015, 333–348.

Article  Google Scholar 

Weichert H., Blechschmidt I., Schröder S., Ambrosius H. 1991. The MTT-assay as a rapid test for cell proliferation and cell killing: application to human peripheral blood lymphocytes (PBL). Allerg. Immunol. (Leipz). 37 (3–4), 139–144.

CAS  Google Scholar 

Molaae N., Mosayebi G., Pishdadian A., Ejtehadifar M., Ganji A. 2017. Evaluating the proliferation of human peripheral blood mononuclear cells using MTT assay. Int. J. Basic Sci. Med. 2 (1), 25–28.

Article  Google Scholar 

Cole S.P.C. 1986. Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother. Pharmacol. 17 (3), 259–263.

Article  CAS  PubMed  Google Scholar 

Campling B.G., Pym J., Baker H.M., Cole S.P.C., Lam Y.M. 1991. Chemosensitivity testing of small cell lung cancer using the MTT assay. Br. J. Cancer. 63 (1), 75–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grela E., Kozłowska J., Grabowiecka A. 2018. Current methodology of MTT assay in bacteria—a review. Acta Histochem. 120 (4), 303–311.

Article  CAS  PubMed  Google Scholar 

Montoro E., Lemus D., Echemendia M., Martin A., Portaels F., Palomino J.C. 2005. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 55 (4), 500–505.

Article  CAS  PubMed  Google Scholar 

Mshana R.N., Tadesse G., Abate G., Miörner H. 1998. Use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 36 (5), 1214–1219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moodley S., Koorbanally N.A., Moodley T., Ramjugernath D., Pillay M. 2014. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay is a rapid, cheap, screening test for the in vitro anti-tuberculous activity of chalcones. J. Microbiol. Methods. 104, 72–78.

Article  CAS  PubMed  Google Scholar 

Shi L., Ge H.-M., Tan S.-H., Li H.-Q., Song Y.-C., Zhu H.-L., Tan R.-X. 2007. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem. 42 (4), 558–564.

Article  CAS  PubMed  Google Scholar 

Brambilla E., Ionescu A., Cazzaniga G., Edefonti V., Gagliani M. 2014. The influence of antibacterial toothpastes on in vitro Streptococcus mutants biofilm formation: A continuous culture study. Am. J. Dent. 27 (3), 160–166.

PubMed  Google Scholar 

Stevens M.G., Olsen S.C. 1993. Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity. J. Immunol. Methods. 157 (1–2), 225–231.

Article  CAS  PubMed  Google Scholar 

Stevens M.G., Kehrli Jr M.E., Canning P.C. 1991. A colorimetric assay for quantitating bovine neutrophil bactericidal activity. Vet. Immunol. Immunopathol. 28 (1), 45–56.

Article  CAS  PubMed  Google Scholar 

Kudelski A. 2008. Analytical applications of Raman spectroscopy. Talanta. 76 (1), 1–8.

Article  CAS  PubMed  Google Scholar 

Kuhar N., Sil S., Umapathy S. 2021. Potential of Raman spectroscopic techniques to study proteins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 258, 119712.

Article  CAS  PubMed  Google Scholar 

Martinez M.G., Bullock A.J., MacNeil S., Rehman I.U. 2019. Characterisation of structural changes in collagen with Raman spectroscopy. Appl. Spectrosc. Rev. 54 (6), 509–542.

Article  CAS  Google Scholar 

Beljebbar A., Bouché O., Diébold M.D., Guillou P.J., Palot J.P., Eudes D., Manfait M. 2009. Identification of Raman spectroscopic markers for the characterization of normal and adenocarcinomatous colonic tissues. Crit. Rev. Oncol. Hematol. 72 (3), 255–264.

Article  CAS  PubMed  Google Scholar 

Depciuch J., Kaznowska E., Zawlik I., Wojnarowska R., Cholewa M., Heraud P., Cebulski J. 2016. Application of Raman spectroscopy and infrared spectroscopy in the identification of breast cancer. Ap-pl. Spectrosc. 70 (2), 251–263.

Article  CAS  Google Scholar 

Chan J.W., Taylor D.S., Lane S.M., Zwerdling T., Tuscano J., Huser T. 2008. Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Anal. Chem. 80 (6), 2180–2187.

Article 

留言 (0)

沒有登入
gif