Walsh T.R., Gales A.C., Laxminarayan R., Dodd P.C. 2023. Antimicrobial resistance: Addressing a global threat to humanity. PLoS Med. 20 (7), e1004264.
Article PubMed PubMed Central Google Scholar
Ranjbar R., Alam M. 2024. Antimicrobial Resistance Collaborators 2022. 2023 Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Evidence-Based Nurs. 2023, ebnurs-2022-103540. https://doi.org/10.1136/ebnurs-2022-103540
O’Neill J. 2016. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. https://apo.org.au/node/63983
Klein E.Y., Van Boeckel T.P., Martinez E.M., Pant S., Gandra S., Levin S.A., Goossens H., Laxminarayan R. 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. U. S. A. 115 (15), E3463–E3470.
Article CAS PubMed PubMed Central Google Scholar
Durand G.A., Raoult D., Dubourg G. 2019. Antibiotic discovery: History, methods and perspectives. Int. J. Antimicrob. Agents. 53 (4), 371–382.
Article CAS PubMed Google Scholar
de Kraker M.E.A., Lipsitch M. 2021. Burden of antimicrobial resistance: Compared to what? Epidemiol. Rev. 43 (1), 53–64.
Article PubMed Central Google Scholar
Hanberger H., Walther S., Leone M., Barie P.S., Rello J., Lipman J., Marshall J.C., Anzueto A., Sakr Y., Pickkers P. 2011. Increased mortality associated with meticillin-resistant Staphylococcus aureus (MRSA) infection in the Intensive Care Unit: Results from the EPIC II study. Int. J. Antimicrob. Agents. 38 (4), 331–335.
Article CAS PubMed Google Scholar
Yang C.C., Sy C.L., Huang Y.C., Shie S.S., Shu J.C., Hsieh P.H., Hsiao C.H., Chen C.J. 2018. Risk factors of treatment failure and 30-day mortality in patients with bacteremia due to MRSA with reduced vancomycin susceptibility. Sci. Rep. 8 (1), 7868.
Article PubMed PubMed Central Google Scholar
Dellinger R.P., Levy M.M., Carlet J.M., Bion J., Parker M.M., Jaeschke R., Reinhart K., Angus D.C., Brun-Buisson C., Beale R. 2008. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 36 (1), 296–327.
Chen H.-C., Lin W.-L., Lin C.-C., Hsieh W.-H., Hsieh C.-H., Wu M.-H., Wu J.-Y., Lee C.-C. 2013. Outcome of inadequate empirical antibiotic therapy in emergency department patients with community-onset bloodstream infections J. Antimicrob. Chemother. 68 (4), 947–953.
Article CAS PubMed Google Scholar
Dickinson J.D., Kollef M.H. 2011. Early and adequate antibiotic therapy in the treatment of severe sepsis and septic shock. Curr. Infect. Dis. Rep. 13, 399–405.
Goneau L.W., Delport J., Langlois L., Poutanen S.M., Razvi H., Reid G., Burton J.P. 2020. Issues beyond resistance: inadequate antibiotic therapy and bacterial hypervirulence. FEMS Microbes. 1 (1), xtaa004.
Reller L.B., Weinstein M., Jorgensen J.H., Ferraro M.J. 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49 (11), 1749–1755.
Khan Z.A., Siddiqui M.F., Park S. 2019. Current and emerging methods of antibiotic susceptibility testing. Diagnostics (Basel). 9 (2), 49.
Article CAS PubMed PubMed Central Google Scholar
Steingart K.R., Schiller I., Horne D.J., Pai M., Boehme C.C., Dendukuri N. 2014. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst. Rev. 2014 (1), CD009593.
Kumar P., Nagarajan A., Uchil P.D. 2018. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018 (6), pdb-prot095505.
Van Meerloo J., Kaspers G.J.L., Cloos J. 2011. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 237–245.
Bahuguna A., Khan I., Bajpai V.K., Kang S.C. 2017. MTT assay to evaluate the cytotoxic potential of a drug. Bangl. J. Pharm. 12 (2), 115–118.
Tolosa L., Donato M.T., Gómez-Lechón M.J. 2015. General cytotoxicity assessment by means of the MTT assay. Methods Mol. Biol. 2015, 333–348.
Weichert H., Blechschmidt I., Schröder S., Ambrosius H. 1991. The MTT-assay as a rapid test for cell proliferation and cell killing: application to human peripheral blood lymphocytes (PBL). Allerg. Immunol. (Leipz). 37 (3–4), 139–144.
Molaae N., Mosayebi G., Pishdadian A., Ejtehadifar M., Ganji A. 2017. Evaluating the proliferation of human peripheral blood mononuclear cells using MTT assay. Int. J. Basic Sci. Med. 2 (1), 25–28.
Cole S.P.C. 1986. Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother. Pharmacol. 17 (3), 259–263.
Article CAS PubMed Google Scholar
Campling B.G., Pym J., Baker H.M., Cole S.P.C., Lam Y.M. 1991. Chemosensitivity testing of small cell lung cancer using the MTT assay. Br. J. Cancer. 63 (1), 75–83.
Article CAS PubMed PubMed Central Google Scholar
Grela E., Kozłowska J., Grabowiecka A. 2018. Current methodology of MTT assay in bacteria—a review. Acta Histochem. 120 (4), 303–311.
Article CAS PubMed Google Scholar
Montoro E., Lemus D., Echemendia M., Martin A., Portaels F., Palomino J.C. 2005. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 55 (4), 500–505.
Article CAS PubMed Google Scholar
Mshana R.N., Tadesse G., Abate G., Miörner H. 1998. Use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 36 (5), 1214–1219.
Article CAS PubMed PubMed Central Google Scholar
Moodley S., Koorbanally N.A., Moodley T., Ramjugernath D., Pillay M. 2014. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay is a rapid, cheap, screening test for the in vitro anti-tuberculous activity of chalcones. J. Microbiol. Methods. 104, 72–78.
Article CAS PubMed Google Scholar
Shi L., Ge H.-M., Tan S.-H., Li H.-Q., Song Y.-C., Zhu H.-L., Tan R.-X. 2007. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem. 42 (4), 558–564.
Article CAS PubMed Google Scholar
Brambilla E., Ionescu A., Cazzaniga G., Edefonti V., Gagliani M. 2014. The influence of antibacterial toothpastes on in vitro Streptococcus mutants biofilm formation: A continuous culture study. Am. J. Dent. 27 (3), 160–166.
Stevens M.G., Olsen S.C. 1993. Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity. J. Immunol. Methods. 157 (1–2), 225–231.
Article CAS PubMed Google Scholar
Stevens M.G., Kehrli Jr M.E., Canning P.C. 1991. A colorimetric assay for quantitating bovine neutrophil bactericidal activity. Vet. Immunol. Immunopathol. 28 (1), 45–56.
Article CAS PubMed Google Scholar
Kudelski A. 2008. Analytical applications of Raman spectroscopy. Talanta. 76 (1), 1–8.
Article CAS PubMed Google Scholar
Kuhar N., Sil S., Umapathy S. 2021. Potential of Raman spectroscopic techniques to study proteins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 258, 119712.
Article CAS PubMed Google Scholar
Martinez M.G., Bullock A.J., MacNeil S., Rehman I.U. 2019. Characterisation of structural changes in collagen with Raman spectroscopy. Appl. Spectrosc. Rev. 54 (6), 509–542.
Beljebbar A., Bouché O., Diébold M.D., Guillou P.J., Palot J.P., Eudes D., Manfait M. 2009. Identification of Raman spectroscopic markers for the characterization of normal and adenocarcinomatous colonic tissues. Crit. Rev. Oncol. Hematol. 72 (3), 255–264.
Article CAS PubMed Google Scholar
Depciuch J., Kaznowska E., Zawlik I., Wojnarowska R., Cholewa M., Heraud P., Cebulski J. 2016. Application of Raman spectroscopy and infrared spectroscopy in the identification of breast cancer. Ap-pl. Spectrosc. 70 (2), 251–263.
Chan J.W., Taylor D.S., Lane S.M., Zwerdling T., Tuscano J., Huser T. 2008. Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Anal. Chem. 80 (6), 2180–2187.
留言 (0)