Llovet J.M., Kelley R.K., Villanueva A., Singal A.G., Pikarsky E., Roayaie S., Lencioni R., Koike K., Zucman-Rossi J., Finn R.S. 2021. Hepatocellular carcinoma. Nat. Rev. Dis. Primers. 7 (6), 1–28. https://doi.org/10.1038/s41572-020-00240-3
Sukowati C., El-Khobar K.E., Jasirwan C.O.M., Kurniawan J., Gani R.A. 2024. Stemness markers in hepatocellular carcinoma of Eastern vs. Western population: Etiology matters? Ann. Hepatol. 29, 101153. https://doi.org/10.1016/j.aohep.2023.101153
Article CAS PubMed Google Scholar
Yang J.D., Hainaut P., Gores G.J., Amadou A., Plymoth A., Roberts L.R. 2019. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 16, 589–604. https://doi.org/10.1038/s41575-019-0186-y
Article PubMed PubMed Central Google Scholar
Raza A. 2014. Hepatocellular carcinoma review: Current treatment, and evidence-based medicine. World J. Gastroenterol. 20, 4115. https://doi.org/10.3748/wjg.v20.i15.4115
Article PubMed PubMed Central Google Scholar
Mansoori B., Mohammadi A., Davudian S., Shirjang S., Baradaran B. 2017. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 7, 339–348. https://doi.org/10.15171/apb.2017.041
Article CAS PubMed PubMed Central Google Scholar
Juvale I.I.A., Hamid A.A.A., Halim K.B.A., Has A.T.C. 2022. P-glycoprotein: New insights into structure, physiological function, regulation and alterations in disease. Heliyon. 8, e09777. https://doi.org/10.1016/j.heliyon.2022.e09777
Badiee S.A., Isu U., Khodadadi E., Moradi M. 2023. The alternating access mechanism in mammalian multidrug resistance transporters and their bacterial homologs. Membranes. 13, 568. https://doi.org/10.3390/membranes13060568
Article CAS PubMed PubMed Central Google Scholar
Emran T.B., Shahriar A., Mahmud A.R., Rahman T., Abir M.H., Siddiquee M.F., Ahmed H., Rahman N., Nainu F., Wahyudin E., Mitra S., Dhama K., Habiballah M.M., Haque S., Islam A., Hassan M.M. 2022. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol. 12, 891652. https://doi.org/10.3389/fonc.2022.891652
Article CAS PubMed PubMed Central Google Scholar
Yin W., Xiang D., Wang T., Zhang Y., Pham C.V., Zhou S., Jiang G., Hou Y., Zhu Y., Han Y., Qiao L., Tran P.H., Duan W. 2021. The inhibition of ABCB1/MDR1 or ABCG2/BCRP enables doxorubicin to eliminate liver cancer stem cells. Sci. Rep. 11 (1), 10791. https://doi.org/10.1038/s41598-021-89931-9
Article CAS PubMed PubMed Central Google Scholar
Sui H., Fan Z.Z., Li Q. 2012. Signal transduction pathways and transcriptional mechanisms of ABCB1/PGP-mediated multiple drug resistance in human cancer cells. J. Int. Med. Res. 40, 426–435. https://doi.org/10.1177/147323001204000204
Article CAS PubMed Google Scholar
Ceballos M.P., Rigalli J.P., Ceré L.I., Semeñiuk M.B., Catania V.A., Ruiz M.L. 2019. ABC transporters: Regulation and association with multidrug resistance in hepatocellular carcinoma and colorectal carcinoma. Curr. Med. Chemi. 26 (7), 1224–1250. https://doi.org/10.2174/0929867325666180105103637
Karthika C., Sureshkumar R., Zehravi M., Akter R., Ali F., Ramproshad S., Mondal B., Tagde P., Ahmed Z., Khan F.S., Rahman M.H., Cavalu S. 2022. Multidrug resistance of cancer cells and the vital role of P-Glycoprotein. Life. 12, 897. https://doi.org/10.3390/life12060897
Article CAS PubMed PubMed Central Google Scholar
Springer A.D., Dowdy S.F. 2018. GalNAC-siRNA conjugates: Leading the way for delivery of RNAI therapeutics. Nucleic Acid Ther. 28 (3), 109–118. https://doi.org/10.1089/nat.2018.0736
Article CAS PubMed PubMed Central Google Scholar
Miller C.M., Harris E.N. 2016. Antisense oligonucleotides: Treatment strategies and cellular internalization. RNA Dis. 3 (4), e1393. https://doi.org/10.14800/rd.1393
Article CAS PubMed PubMed Central Google Scholar
Debacker A.J., Voutila J., Catley M.C., Blakey D.C., Habib N. 2020. Delivery of Oligonucleotides to the Liver with GalNAc. Mol. Ther. 28, 1759–1771. https://doi.org/10.1016/j.ymthe.2020.06.015
Article CAS PubMed PubMed Central Google Scholar
Cui H., Zhu X., Li S., Wang P., Fang J. 2021. Liver-targeted delivery of oligonucleotides with N-acetylgalactosamine conjugation. ACS Omega. 6 (25), 16259–16265. https://doi.org/10.1021/acsomega.1c01755
Article CAS PubMed PubMed Central Google Scholar
Mathews D.H., Disney M.D., Childs J.L., Schroeder S.J., Zuker M., Turner D.H. 2004. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. U. S. A. 101, 7287–7292. https://doi.org/10.1073/pnas.0401799101
Article CAS PubMed PubMed Central Google Scholar
Lorenz R., Bernhart S.H., Siederdissen C.H.Z., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. 2011. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26. https://doi.org/10.1186/1748-7188-6-26
Article PubMed PubMed Central Google Scholar
Ding Y., Chan C.Y., Lawrence C.E. 2005. RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA. 11, 1157–1166. https://rnajournal.cshlp.org/content/11/8/1157
Article CAS PubMed PubMed Central Google Scholar
2018. MTT Stock Solution (12 mm). CSH Protocols. 2018, pdb.rec096875. https://doi.org/10.1101/pdb.rec096875
Sharma N., Arya G., Kumari R., Gupta N., Nimesh S. 2019. Evaluation of anticancer activity of silver nanoparticles on the A549 human lung carcinoma cell lines through alamar blue assay. Bio Protoc. 9 (1), e3131. https://doi.org/10.21769/bioprotoc.3131
Article CAS PubMed PubMed Central Google Scholar
Wang X., Yu S., Lou E., Tan Y.-L., Tan Z.-J. 2023. RNA 3D structure prediction: Progress and perspective. Molecules. 28, 5532. https://doi.org/10.3390/molecules28145532
Article CAS PubMed PubMed Central Google Scholar
Madanagopal P., Muthukumar H., Thiruvengadam K. 2022. Computational study and design of effective siRNAs to silence structural proteins associated genes of Indian SARS-CoV-2 strains. Comput. Biol. Chem. 98, 107687. https://doi.org/10.1016/j.compbiolchem.2022.107687
Article CAS PubMed PubMed Central Google Scholar
Al-Madhagi H.A. 2024. Empowering therapeutic strategies against methicillin-resistant staphylococcus aureus riboswitch: Unveiling the potential of small molecules and antisense oligonucleotides through in silico analysis. Adv. J. Chem. Sect. A. 7 (1), 15–26. https://doi.org/10.48309/ajca.2024.413428.1405
Roush W. 1997. Antisense aims for a renaissance. Science. 276, 1192–1193. https://doi.org/10.1126/science.276.5316.1192
Article CAS PubMed Google Scholar
Yoo B., Bochkareva E., Bochkarev A., Mou T.C., Gray D.M. 2004. 2’-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res. 32 (6), 2008–2016. https://doi.org/10.1093/nar/gkh516
Article CAS PubMed PubMed Central Google Scholar
Krieg A.M. 2019. Mind the gap! Nat. Biotechnol. 37, 622–623. https://doi.org/10.1038/s41587-019-0141-z
留言 (0)