Enzymes of ADP-Heptose Biosynthesis As Targets for the Creation of Broad-Spectrum Antibacterial Drugs

Bharadwaj A., Rastogi A., Pandey S., Gupta S., Sohal J.S. 2022. Multidrug-resistant bacteria: Their mechanism of action and prophylaxis. BioMed. Res. Int. 2022, 5419874. https://doi.org/10.1155/2022/5419874

Darby E.M., Trampari E., Siasat P., Gaya M.S., Alav I., Webber M.A., Blair J.M.A. 2023. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295. https://doi.org/10.1038/s41579-022-00820-y

Article  CAS  PubMed  Google Scholar 

Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 130, 797–810. https://doi.org/10.1016/j.cell.2007.06.049

Article  CAS  PubMed  Google Scholar 

Lobritz M.A., Belenky P., Porter C.B.M., Gutierrez A., Yang J.H., Schwarz E.G., Dwyer D.J., Khalil A.S., Collins J.J. 2015. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. U. S. A. 112, 8173–8180. https://doi.org/10.1073/pnas.1509743112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dwyer D.J., Belenky P.A., Yang J.H., Mac-Donald I.C., Martell J.D., Takahashi N., Chan C.T., Lobritz M.A., Braff D., Schwarz E.G., Ye J.D., Pati M., Vercruysse M., Ralifo P.S., Allison K.R., Khalil A.S., Ting A.Y., Walker G.C., Collins J.J. 2014. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. U. S. A. 111, E2100–E2109. https://doi.org/10.1073/pnas.1401876111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stokes J.M., Lopatkin A.J., Lobritz M.A., Collins J.J. 2019. Bacterial metabolism and antibiotic efficacy. Cell Metabolism. 30, 251–259. https://doi.org/10.1016/j.cmet.2019.06.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shatalin K., Shatalina E., Mironov A., Nudler E. 2011. H2S: A universal defense against antibiotics in bacteria. Science. 334, 986–990. https://doi.org/10.1126/science.1209855

Article  CAS  PubMed  Google Scholar 

Mironov A., Seregina T., Nagornykh M, Luhachack L., Korolkova L., Errais Lopes L., Kotova V., Zavilgelsky G., Shakulov R., Shatalin R., Nudler E. 2017. A mechanism of H2S-mediated protection against oxidative stress in E. coli. Proc. Natl. Acad. Sci. U. S. A. 114, 6022–6027. https://doi.org/10.1073/pnas.1703576114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mironov A., Seregina T., Shatalin K., Nagornykh M., Shakulov R., Nudler E. 2020. CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proc. Natl. Acad. Sci. U. S. A. 117, 23565–53570. https://doi.org/10.1073/pnas.2007817117

Article  PubMed  PubMed Central  Google Scholar 

Seregina T., Lobanov K., Shakulov R., Mironov A. 2022. Enhancement of the bactericidal effect of antibiotics by inhibition of enzymes involved in production of hydrogen sulfide in bacteria. Mol. Biol. (Moscow). 56, 638–648. )https://doi.org/10.1134/S0026893322050120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sprenger G.A. 1995. Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch. Microbiol. 164, 324–330. https://doi.org/10.1007/BF02529978

Article  CAS  PubMed  Google Scholar 

Kneidinger B., Marolda C., Graninger M., Zamyatina A., McArthur F., Kosma P., Valvano M.A., Messner P. 2002. Biosynthesis pathway of ADP-l-glycero-β-D-manno-heptose in Escherichia coli. J. Bacteriol. 184, 363–369. https://doi.org/10.1128/JB.184.2.363-369.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang K.C., Mukhopadhyay R., Wen B., Gitai Z., Wingreen N.S. 2008. Cell shape and cell-wall organization in gram-negative bacteria. Proc. Natl. Acad. Sci. U. S. A. 105, 19282–19287. https://doi.org/10.1073/pnas.0805309105

Article  PubMed  PubMed Central  Google Scholar 

Seregina T.A., Petrushanko I.Yu., Shakulov R.S., Zaripov P.I., Makarov A.A., Mitkevich V.A., Mironov A.S. 2022. The inactivation of LPS biosynthesis genes in E. coli cells leads to oxidative stress. Cells. 11, https://doi.org/10.3390/cells11172667

Schnaitman C.A., Klena J.D. 1993. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev. 57, 655–682. https://doi.org/10.1128/mr.57.3.655-682.1993

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor P.L., Blakely K.M., de Leon G.P., Walker J.R., McArthur F., Evdokimova E., Zhang K., Valvano M.A., Wright G.D., Junop M.S. 2008. Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J. Biol.Chem. 283, 2835–2845. https://doi.org/10.1074/jbc.M706163200

Article  CAS  PubMed  Google Scholar 

Desroy N., Denis A., Oliveira C., Atamanyuk D., Briet S., Faivre F., LeFralliec G., Bonvin Y., Oxoby M., Escaich S., Floquet S., Drocourt E., Vongsouthi V., Durant L., Moreau F., Verhey T.B., Lee T.W., Junop M.S., Gerusz V. 2013. Novel HldE-K inhibitors leading to attenuated gram negative bacterial virulence. J. Med. Chem. 56, 1418–1430. https://doi.org/10.1021/jm301499r

Article  CAS  PubMed  Google Scholar 

Desroy N., Moreau F., Briet S., Fralliec G.L., Floquet S., Durant L., Vongsouthi V., Gerusz V., Denis A., Escaich S. 2009. Towards gram-negative antivirulence drugs: new inhibitors of HldE kinase. Bioorg. Med. Chem. 17, 1276–1289. https://doi.org/10.1016/j.bmc.2008.12.021

Article  CAS  PubMed  Google Scholar 

Durka M., Tikad A., Périon R., Bosco M., Andaloussi M., Floquet S., Malacain E., Moreau F., Oxoby M., Gerusz V., Vincent S.P. 2011. Systematic synthesis of inhibitors of the two first enzymes of the bacterial heptose biosynthetic pathway: Towards antivirulence molecules targeting lipopolysaccharide biosynthesis. Chemistry. 17, 11305–11313. https://doi.org/10.1002/chem.201100396

Article  CAS  PubMed  Google Scholar 

Valvano M.A. 1999. Biosynthesis and genetics of ADP-heptose. J. Endotoxin Res. 5, 90–95. https://doi.org/10.1177/09680519990050010901

Article  CAS  Google Scholar 

Pagnout C., Sohm B., Razafitianamaharavo A., Caillet C., Offroy M., Leduc M., Gendre H., Jomini S., Beaussart A., Bauda P., Duval J.F.L. 2019. Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci. Rep. 9, 9696. https://doi.org/10.1038/s41598-019-46100-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimada T., Takada, H., Yamamoto K., Ishihama A. 2015. Expanded roles of two-component response regulator OmpR in Escherichia coli: Genomic SELEX search for novel regulation targets. Genes Cells. 20, 915–931. https://doi.org/10.1111/gtc.12282

Article  CAS  PubMed  Google Scholar 

Fu D., Wu J., Gu Y., Li Q., Shao Y., Feng H., Song X., Tu J., Qi K. 2022. The response regulator OmpR contributes to the pathogenicity of avian pathogenic Escherichia coli. Poultry Sci. 101, 101757. https://doi.org/10.1016/j.psj.2022.101757

Article  CAS  Google Scholar 

Jubelin G., Vianney A., Beloin C., Ghigo J.-M., Lazzaroni J.-C., Lejeune P., Dorel C. 2005. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol. 187, 2038–2049. https://doi.org/10.1128/jb.187.6.2038-2049.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rome K., Borde C., Taher R., Cayron J., Lesterlin C., Gueguen E., De Rosny E., Rodrigue A. 2018. The two-component system ZraPSR is a novel ESR that contributes to intrinsic antibiotic tolerance in Escherichia coli. J. Mol. Biol. 430, 4971–4985. https://doi.org/10.1016/j.jmb.2018.10.021

Article  CAS  PubMed  Google Scholar 

Leonhartsberger S., Huber A., Lottspeich F., Böck A. 2001. The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J. Mol. Biol. 307, 93–105. https://doi.org/10.1006/jmbi.2000.4451

Article  CAS  PubMed  Google Scholar 

Wang X., Quinn P.J. 2010. Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog. Lipid Res. 49, 97–107. https://doi.org/10.1016/j.plipres.2009.06.002

Article  CAS 

留言 (0)

沒有登入
gif