Bharadwaj A., Rastogi A., Pandey S., Gupta S., Sohal J.S. 2022. Multidrug-resistant bacteria: Their mechanism of action and prophylaxis. BioMed. Res. Int. 2022, 5419874. https://doi.org/10.1155/2022/5419874
Darby E.M., Trampari E., Siasat P., Gaya M.S., Alav I., Webber M.A., Blair J.M.A. 2023. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295. https://doi.org/10.1038/s41579-022-00820-y
Article CAS PubMed Google Scholar
Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 130, 797–810. https://doi.org/10.1016/j.cell.2007.06.049
Article CAS PubMed Google Scholar
Lobritz M.A., Belenky P., Porter C.B.M., Gutierrez A., Yang J.H., Schwarz E.G., Dwyer D.J., Khalil A.S., Collins J.J. 2015. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. U. S. A. 112, 8173–8180. https://doi.org/10.1073/pnas.1509743112
Article CAS PubMed PubMed Central Google Scholar
Dwyer D.J., Belenky P.A., Yang J.H., Mac-Donald I.C., Martell J.D., Takahashi N., Chan C.T., Lobritz M.A., Braff D., Schwarz E.G., Ye J.D., Pati M., Vercruysse M., Ralifo P.S., Allison K.R., Khalil A.S., Ting A.Y., Walker G.C., Collins J.J. 2014. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. U. S. A. 111, E2100–E2109. https://doi.org/10.1073/pnas.1401876111
Article CAS PubMed PubMed Central Google Scholar
Stokes J.M., Lopatkin A.J., Lobritz M.A., Collins J.J. 2019. Bacterial metabolism and antibiotic efficacy. Cell Metabolism. 30, 251–259. https://doi.org/10.1016/j.cmet.2019.06.009
Article CAS PubMed PubMed Central Google Scholar
Shatalin K., Shatalina E., Mironov A., Nudler E. 2011. H2S: A universal defense against antibiotics in bacteria. Science. 334, 986–990. https://doi.org/10.1126/science.1209855
Article CAS PubMed Google Scholar
Mironov A., Seregina T., Nagornykh M, Luhachack L., Korolkova L., Errais Lopes L., Kotova V., Zavilgelsky G., Shakulov R., Shatalin R., Nudler E. 2017. A mechanism of H2S-mediated protection against oxidative stress in E. coli. Proc. Natl. Acad. Sci. U. S. A. 114, 6022–6027. https://doi.org/10.1073/pnas.1703576114
Article CAS PubMed PubMed Central Google Scholar
Mironov A., Seregina T., Shatalin K., Nagornykh M., Shakulov R., Nudler E. 2020. CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proc. Natl. Acad. Sci. U. S. A. 117, 23565–53570. https://doi.org/10.1073/pnas.2007817117
Article PubMed PubMed Central Google Scholar
Seregina T., Lobanov K., Shakulov R., Mironov A. 2022. Enhancement of the bactericidal effect of antibiotics by inhibition of enzymes involved in production of hydrogen sulfide in bacteria. Mol. Biol. (Moscow). 56, 638–648. )https://doi.org/10.1134/S0026893322050120
Article CAS PubMed PubMed Central Google Scholar
Sprenger G.A. 1995. Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch. Microbiol. 164, 324–330. https://doi.org/10.1007/BF02529978
Article CAS PubMed Google Scholar
Kneidinger B., Marolda C., Graninger M., Zamyatina A., McArthur F., Kosma P., Valvano M.A., Messner P. 2002. Biosynthesis pathway of ADP-l-glycero-β-D-manno-heptose in Escherichia coli. J. Bacteriol. 184, 363–369. https://doi.org/10.1128/JB.184.2.363-369.2002
Article CAS PubMed PubMed Central Google Scholar
Huang K.C., Mukhopadhyay R., Wen B., Gitai Z., Wingreen N.S. 2008. Cell shape and cell-wall organization in gram-negative bacteria. Proc. Natl. Acad. Sci. U. S. A. 105, 19282–19287. https://doi.org/10.1073/pnas.0805309105
Article PubMed PubMed Central Google Scholar
Seregina T.A., Petrushanko I.Yu., Shakulov R.S., Zaripov P.I., Makarov A.A., Mitkevich V.A., Mironov A.S. 2022. The inactivation of LPS biosynthesis genes in E. coli cells leads to oxidative stress. Cells. 11, https://doi.org/10.3390/cells11172667
Schnaitman C.A., Klena J.D. 1993. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev. 57, 655–682. https://doi.org/10.1128/mr.57.3.655-682.1993
Article CAS PubMed PubMed Central Google Scholar
Taylor P.L., Blakely K.M., de Leon G.P., Walker J.R., McArthur F., Evdokimova E., Zhang K., Valvano M.A., Wright G.D., Junop M.S. 2008. Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J. Biol.Chem. 283, 2835–2845. https://doi.org/10.1074/jbc.M706163200
Article CAS PubMed Google Scholar
Desroy N., Denis A., Oliveira C., Atamanyuk D., Briet S., Faivre F., LeFralliec G., Bonvin Y., Oxoby M., Escaich S., Floquet S., Drocourt E., Vongsouthi V., Durant L., Moreau F., Verhey T.B., Lee T.W., Junop M.S., Gerusz V. 2013. Novel HldE-K inhibitors leading to attenuated gram negative bacterial virulence. J. Med. Chem. 56, 1418–1430. https://doi.org/10.1021/jm301499r
Article CAS PubMed Google Scholar
Desroy N., Moreau F., Briet S., Fralliec G.L., Floquet S., Durant L., Vongsouthi V., Gerusz V., Denis A., Escaich S. 2009. Towards gram-negative antivirulence drugs: new inhibitors of HldE kinase. Bioorg. Med. Chem. 17, 1276–1289. https://doi.org/10.1016/j.bmc.2008.12.021
Article CAS PubMed Google Scholar
Durka M., Tikad A., Périon R., Bosco M., Andaloussi M., Floquet S., Malacain E., Moreau F., Oxoby M., Gerusz V., Vincent S.P. 2011. Systematic synthesis of inhibitors of the two first enzymes of the bacterial heptose biosynthetic pathway: Towards antivirulence molecules targeting lipopolysaccharide biosynthesis. Chemistry. 17, 11305–11313. https://doi.org/10.1002/chem.201100396
Article CAS PubMed Google Scholar
Valvano M.A. 1999. Biosynthesis and genetics of ADP-heptose. J. Endotoxin Res. 5, 90–95. https://doi.org/10.1177/09680519990050010901
Pagnout C., Sohm B., Razafitianamaharavo A., Caillet C., Offroy M., Leduc M., Gendre H., Jomini S., Beaussart A., Bauda P., Duval J.F.L. 2019. Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci. Rep. 9, 9696. https://doi.org/10.1038/s41598-019-46100-3
Article CAS PubMed PubMed Central Google Scholar
Shimada T., Takada, H., Yamamoto K., Ishihama A. 2015. Expanded roles of two-component response regulator OmpR in Escherichia coli: Genomic SELEX search for novel regulation targets. Genes Cells. 20, 915–931. https://doi.org/10.1111/gtc.12282
Article CAS PubMed Google Scholar
Fu D., Wu J., Gu Y., Li Q., Shao Y., Feng H., Song X., Tu J., Qi K. 2022. The response regulator OmpR contributes to the pathogenicity of avian pathogenic Escherichia coli. Poultry Sci. 101, 101757. https://doi.org/10.1016/j.psj.2022.101757
Jubelin G., Vianney A., Beloin C., Ghigo J.-M., Lazzaroni J.-C., Lejeune P., Dorel C. 2005. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol. 187, 2038–2049. https://doi.org/10.1128/jb.187.6.2038-2049.2005
Article CAS PubMed PubMed Central Google Scholar
Rome K., Borde C., Taher R., Cayron J., Lesterlin C., Gueguen E., De Rosny E., Rodrigue A. 2018. The two-component system ZraPSR is a novel ESR that contributes to intrinsic antibiotic tolerance in Escherichia coli. J. Mol. Biol. 430, 4971–4985. https://doi.org/10.1016/j.jmb.2018.10.021
Article CAS PubMed Google Scholar
Leonhartsberger S., Huber A., Lottspeich F., Böck A. 2001. The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J. Mol. Biol. 307, 93–105. https://doi.org/10.1006/jmbi.2000.4451
Article CAS PubMed Google Scholar
Wang X., Quinn P.J. 2010. Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog. Lipid Res. 49, 97–107. https://doi.org/10.1016/j.plipres.2009.06.002
留言 (0)