Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. 2002. Protein Function. Chapter 3. In Molecular Biology of the Cell. 4th ed. New York: Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK26911/.
Lührmann R., Kastner B., Bach M. 1990. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim. Biophys. Acta. 1087 (3), 265–292. https://doi.org/10.1016/0167-4781(90)90001-I
Moore P.B. 1998. The three-dimensional structure of the ribosome and its components. Annu. Rev. Biophys. Biomol. Struct. 27, 35–58. https://doi.org/10.1146/annurev.biophys.27.1.35
Article CAS PubMed Google Scholar
Stefl R., Skrisovska L., Allain F.H.T. 2005. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep. 6 (1), 33–38. https://doi.org/10.1038/sj.embor.7400325
Article CAS PubMed PubMed Central Google Scholar
Riley K.J., Steitz J.A. 2013. The “Observer Effect” in genome-wide surveys of protein-RNA interactions. Mol. Cell. 49 (4), 601–604. https://doi.org/10.1016/j.molcel.2013.01.030
Article CAS PubMed PubMed Central Google Scholar
Dominguez D., Freese P., Alexis M.S., Su A., Hochman M., Palden T., Bazile C., Lambert N.J., Van Nostrand E.L., Pratt G.A., Yeo G.W., Graveley B.R., Burge C.B. 2018. Sequence, structure, and context preferences of human RNA binding proteins. Mol. Cell. 70 (5), 854‒867.e9. https://doi.org/10.1016/j.molcel.2018.05.001
Article CAS PubMed PubMed Central Google Scholar
Darai N., Mahalapbutr P., Wolschann P., Lee V.S., Wolfinger M.T., Rungrotmongkol T. 2022. Theoretical studies on RNA recognition by Musashi 1 RNA-binding protein. Sci. Rep. 12, 12137. https://doi.org/10.1038/s41598-022-16252-w
Article CAS PubMed PubMed Central Google Scholar
Cléry A., Blatter M., Allain F.H.T. 2008. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18 (3), 290–298. https://doi.org/10.1016/j.sbi.2008.04.002
Article CAS PubMed Google Scholar
Krepl M., Cléry A., Blatter M., Allain F.H.T., Sponer J. 2016. Synergy between NMR measurements and MD simulations of protein/RNA complexes: Application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 44 (13), 6452–6470. https://doi.org/10.1093/nar/gkw438
Article CAS PubMed PubMed Central Google Scholar
Nagai K., Oubridge C., Jessen T.H., Li J., Evans P.R. 1990. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature. 348 (6301), 515–520. https://doi.org/10.1038/348515A0
Article CAS PubMed Google Scholar
Muto Y., Yokoyama S. 2012. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. Wiley Interdiscip. Rev. RNA. 3 (2), 229–246. https://doi.org/10.1002/wrna.1107
Article CAS PubMed Google Scholar
Allain F.H.T., Bouvet P., Dieckmann T., Feigon J. 2000. Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J. 19 (24), 6870–6881. https://doi.org/10.1093/emboj/19.24.6870
Article CAS PubMed PubMed Central Google Scholar
Afroz T., Cienikova Z., Cléry A., Allain F.H.T. 2015. One, two, three, four! How multiple RRMs read the genome sequence. Methods Enzymol. 558 (1), 235–278. https://doi.org/10.1016/bs.mie.2015.01.015
Article CAS PubMed Google Scholar
Diarra Dit Konté N., Krepl M., Damberger F.F., Ripin N., Duss O., Šponer J., Allain F.H. 2017. Aromatic side-chain conformational switch on the surface of the RNA recognition motif enables RNA discrimination. Nat. Commun. 8 (1), 654. https://doi.org/10.1038/s41467-017-00631-3
Article CAS PubMed PubMed Central Google Scholar
Suominen T., Bachinski L.L., Auvinen S., Hackman P., Baggerly K.A., Angelini C., Peltonen L., Krahe R., Udd B. 2011. Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur. J. Hum. Genet. 19, 776–782. https://doi.org/10.1038/ejhg.2011.23
Article CAS PubMed PubMed Central Google Scholar
Timchenko L.T., Miller J.W., Timchenko N.A., DeVore D.R., Datar K.V., Lin L., Roberts R., Caskey C.T., Swanson M.S. 1996. Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res. 24 (22), 4407‒4417. https://doi.org/10.1093/nar/24.22.4407
Article CAS PubMed PubMed Central Google Scholar
Guo T., T, Wang Y., Sun X., Hou S., Lan Y., Yuan S., Yang S., Zhao F., Chu Y., Ma Y., Cheng T., Yu J., Liu B., Yuan W., Wang X. 2024. Loss of RNA-binding protein CELF2 promotes acute leukemia development via FAT10-mTORC1. Oncogene. 43 (19), 1476‒1487. https://doi.org/10.1038/s41388-024-03006-3
Article CAS PubMed PubMed Central Google Scholar
Bandziulis R.J., Swanson M.S., Dreyfuss G. 1989. RNA-binding proteins as developmental regulators. Genes Dev. 3 (4), 431‒437. https://doi.org/10.1101/gad.3.4.431
Article CAS PubMed Google Scholar
Moras D., Poterszman A. 1995. RNA-protein interactions: diverse modes of recognition. Curr. Biol. 5 (3), 249–251. https://doi.org/10.1016/S0960-9822(95)00051-0
Article CAS PubMed Google Scholar
Lee J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y., Jo S., Pande V.S., Case D.A., Brooks C.L. 3rd, MacKerell A.D. Jr, Klauda J.B., Im W. 2016. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12 (1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
Article CAS PubMed Google Scholar
Huang J., Mackerell A.D. 2013. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 34 (25), 2135–2145. https://doi.org/10.1002/jcc.23354
Article CAS PubMed PubMed Central Google Scholar
Blokzijl F., de Ligt J., Jager M., Sasselli V., Roerink S., Sasaki N., Huch M., Boymans S., Kuijk E., Prins P., Nijman I.J., Martincorena I., Mokry M., Wiegerinck C.L., Middendorp S., Sato T., Schwank G., Nieuwenhuis E.E., Verstegen M.M., van der Laan L.J., de Jonge J., IJzermans J.N., Vries R.G., van de Wetering M., Stratton M.R., Clevers H., Cuppen E., van Boxtel R. 2016. Tissue-specific mutation accumulation in human adult stem cells during life. Nature. 538 (7624), 260–264. https://doi.org/10.1038/nature19768
Article CAS PubMed PubMed Central Google Scholar
Hou T., Wang J., Li Y., Wang W. 2011. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 51 (1), 69–82. https://doi.org/10.1021/ci100275a
Article CAS PubMed Google Scholar
Homeyer N., Gohlke H. 2012. Free energy calculations by the molecular mechanics poisson-boltzmann surface area method. Mol. Inform. 31 (2), 114–122. https://doi.org/10.1002/minf.201100135
Article CAS PubMed Google Scholar
Valdés-Tresanco M.S., Valdés-Tresanco M.E., Valiente P.A., Moreno E. 2021. Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 17 (10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
Article CAS PubMed Google Scholar
Genheden S., Ryde U. 2015. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug. Discovery 10 (5), 449‒461. https://doi.org/10.1517/17460441.2015.1032936
Wan H., Hu J.P., Tian X.H., Chang S. 2012. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Phys. Chem. Chem. Phys. 15 (4), 1241–1251. https:
留言 (0)