Elucidating the Effects of Aromatic Mutations on the RNA Binding Efficacy of CELF2 Protein

Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. 2002. Protein Function. Chapter 3. In Molecular Biology of the Cell. 4th ed. New York: Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK26911/.

Lührmann R., Kastner B., Bach M. 1990. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim. Biophys. Acta. 1087 (3), 265–292. https://doi.org/10.1016/0167-4781(90)90001-I

Article  PubMed  Google Scholar 

Moore P.B. 1998. The three-dimensional structure of the ribosome and its components. Annu. Rev. Biophys. Biomol. Struct. 27, 35–58. https://doi.org/10.1146/annurev.biophys.27.1.35

Article  CAS  PubMed  Google Scholar 

Stefl R., Skrisovska L., Allain F.H.T. 2005. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep. 6 (1), 33–38. https://doi.org/10.1038/sj.embor.7400325

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riley K.J., Steitz J.A. 2013. The “Observer Effect” in genome-wide surveys of protein-RNA interactions. Mol. Cell. 49 (4), 601–604. https://doi.org/10.1016/j.molcel.2013.01.030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dominguez D., Freese P., Alexis M.S., Su A., Hochman M., Palden T., Bazile C., Lambert N.J., Van Nostrand E.L., Pratt G.A., Yeo G.W., Graveley B.R., Burge C.B. 2018. Sequence, structure, and context preferences of human RNA binding proteins. Mol. Cell. 70 (5), 854‒867.e9. https://doi.org/10.1016/j.molcel.2018.05.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Darai N., Mahalapbutr P., Wolschann P., Lee V.S., Wolfinger M.T., Rungrotmongkol T. 2022. Theoretical studies on RNA recognition by Musashi 1 RNA-binding protein. Sci. Rep. 12, 12137. https://doi.org/10.1038/s41598-022-16252-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cléry A., Blatter M., Allain F.H.T. 2008. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18 (3), 290–298. https://doi.org/10.1016/j.sbi.2008.04.002

Article  CAS  PubMed  Google Scholar 

Krepl M., Cléry A., Blatter M., Allain F.H.T., Sponer J. 2016. Synergy between NMR measurements and MD simulations of protein/RNA complexes: Application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 44 (13), 6452–6470. https://doi.org/10.1093/nar/gkw438

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagai K., Oubridge C., Jessen T.H., Li J., Evans P.R. 1990. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature. 348 (6301), 515–520. https://doi.org/10.1038/348515A0

Article  CAS  PubMed  Google Scholar 

Muto Y., Yokoyama S. 2012. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. Wiley Interdiscip. Rev. RNA. 3 (2), 229–246. https://doi.org/10.1002/wrna.1107

Article  CAS  PubMed  Google Scholar 

Allain F.H.T., Bouvet P., Dieckmann T., Feigon J. 2000. Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J. 19 (24), 6870–6881. https://doi.org/10.1093/emboj/19.24.6870

Article  CAS  PubMed  PubMed Central  Google Scholar 

Afroz T., Cienikova Z., Cléry A., Allain F.H.T. 2015. One, two, three, four! How multiple RRMs read the genome sequence. Methods Enzymol. 558 (1), 235–278. https://doi.org/10.1016/bs.mie.2015.01.015

Article  CAS  PubMed  Google Scholar 

Diarra Dit Konté N., Krepl M., Damberger F.F., Ripin N., Duss O., Šponer J., Allain F.H. 2017. Aromatic side-chain conformational switch on the surface of the RNA recognition motif enables RNA discrimination. Nat. Commun. 8 (1), 654. https://doi.org/10.1038/s41467-017-00631-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suominen T., Bachinski L.L., Auvinen S., Hackman P., Baggerly K.A., Angelini C., Peltonen L., Krahe R., Udd B. 2011. Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur. J. Hum. Genet. 19, 776–782. https://doi.org/10.1038/ejhg.2011.23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Timchenko L.T., Miller J.W., Timchenko N.A., DeVore D.R., Datar K.V., Lin L., Roberts R., Caskey C.T., Swanson M.S. 1996. Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res. 24 (22), 4407‒4417. https://doi.org/10.1093/nar/24.22.4407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo T., T, Wang Y., Sun X., Hou S., Lan Y., Yuan S., Yang S., Zhao F., Chu Y., Ma Y., Cheng T., Yu J., Liu B., Yuan W., Wang X. 2024. Loss of RNA-binding protein CELF2 promotes acute leukemia development via FAT10-mTORC1. Oncogene. 43 (19), 1476‒1487. https://doi.org/10.1038/s41388-024-03006-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bandziulis R.J., Swanson M.S., Dreyfuss G. 1989. RNA-binding proteins as developmental regulators. Genes Dev. 3 (4), 431‒437. https://doi.org/10.1101/gad.3.4.431

Article  CAS  PubMed  Google Scholar 

Moras D., Poterszman A. 1995. RNA-protein interactions: diverse modes of recognition. Curr. Biol. 5 (3), 249–251. https://doi.org/10.1016/S0960-9822(95)00051-0

Article  CAS  PubMed  Google Scholar 

Lee J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y., Jo S., Pande V.S., Case D.A., Brooks C.L. 3rd, MacKerell A.D. Jr, Klauda J.B., Im W. 2016. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12 (1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935

Article  CAS  PubMed  Google Scholar 

Huang J., Mackerell A.D. 2013. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 34 (25), 2135–2145. https://doi.org/10.1002/jcc.23354

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blokzijl F., de Ligt J., Jager M., Sasselli V., Roerink S., Sasaki N., Huch M., Boymans S., Kuijk E., Prins P., Nijman I.J., Martincorena I., Mokry M., Wiegerinck C.L., Middendorp S., Sato T., Schwank G., Nieuwenhuis E.E., Verstegen M.M., van der Laan L.J., de Jonge J., IJzermans J.N., Vries R.G., van de Wetering M., Stratton M.R., Clevers H., Cuppen E., van Boxtel R. 2016. Tissue-specific mutation accumulation in human adult stem cells during life. Nature. 538 (7624), 260–264. https://doi.org/10.1038/nature19768

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou T., Wang J., Li Y., Wang W. 2011. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 51 (1), 69–82. https://doi.org/10.1021/ci100275a

Article  CAS  PubMed  Google Scholar 

Homeyer N., Gohlke H. 2012. Free energy calculations by the molecular mechanics poisson-boltzmann surface area method. Mol. Inform. 31 (2), 114–122. https://doi.org/10.1002/minf.201100135

Article  CAS  PubMed  Google Scholar 

Valdés-Tresanco M.S., Valdés-Tresanco M.E., Valiente P.A., Moreno E. 2021. Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 17 (10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645

Article  CAS  PubMed  Google Scholar 

Genheden S., Ryde U. 2015. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug. Discovery 10 (5), 449‒461. https://doi.org/10.1517/17460441.2015.1032936

Article  CAS  Google Scholar 

Wan H., Hu J.P., Tian X.H., Chang S. 2012. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Phys. Chem. Chem. Phys. 15 (4), 1241–1251. https:

留言 (0)

沒有登入
gif