Antibiotic Resistance: Threats and Search for Solution

Antimicrobial Resistance Collaborators. 2022. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 399 (10325), 629‒655.

Article  Google Scholar 

Jacoby G.A. 2017. History of drug-resistant microbes. In Antimicrobial Drug Resistance. Berlin/Heidelberg, Germany: Springer, pp. 3–8.

Google Scholar 

Perry J., Waglechner N., Wright G. 2016. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6, a025197.

Article  PubMed  PubMed Central  Google Scholar 

Barlow M., Hall B.G. 2002. Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. J. Mol. Evol. 55, 314–321.

Article  CAS  PubMed  Google Scholar 

Sir Alexander Fleming. Nobel Lecture. NobelPrize.org. n.d. Nobel Prize. https://www.nobelprize.org/prizes/medicine/1945/fleming/lecture/.

Urban-Chmiel R., Marek A., Stepień-Pyśniak D., Wieczorek K., Dec M., Nowaczek A., Osek J. 2022. Antibiotic resistance in bacteria—a review. Antibiotics. 11, 1079. https://doi.org/10.3390/antibiotics11081079

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munita J.M., Arias C.A. 2016. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4, 1–37.

Article  CAS  Google Scholar 

Martinez J.L. 2011. Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Front. Microbiol. 2, 265.

PubMed  Google Scholar 

Jutkina J., Marathe N.P., Flach C.F., Larsson D.G.J. 2018. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616–617, 172–178.

Article  PubMed  Google Scholar 

Zhang Y., Gu A.Z., He M., Li D., Chen J. 2017. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ. Sci. Technol. 51, 570–580.

Article  CAS  PubMed  Google Scholar 

Kumar M., Sarma D.K., Shubham S., Kumawat M., Verma V., Nina P.B., Devraj J.P., Kumar S., Singh B., Tiwari R.R 2021. Futuristic non-antibiotic therapies to combat antibiotic resistance: A review. Front. Microbiol. 12, 609459. https://doi.org/10.3389/fmicb.2021.609459

Article  PubMed  PubMed Central  Google Scholar 

Shchekotikhin A.E., Olsufieva E.N., Yankovskaya V.S. 2022. Antibiotiki i rodstvennye soedineniya. (Antibiotics and Related Compounds). Moscow: Laboratoriya znanii.

Diacon A.H., Pym A., Grobusch M., Patientia R., Rustomjee R., Page-Shipp L., Pistorius C., Krause R., Bogoshi M., Churchyard G., Venter A., Allen J., Palomino J.C., De Marez T., van Heeswijk R.P., Lounis N., Meyvisch P., Verbeeck J., Parys W., de Beule K., Andries K., Mc Neeley D.F. 2009. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360 (23), 2397–2405. https://doi.org/10.1056/NEJMoa0808427

Article  CAS  PubMed  Google Scholar 

Biukovic G., Basak S., Manimekalai M.S., Ri-shikesan S., Roessle M., Dick T., Rao S.P., Hunke C., Gruber G. 2013. Variations of subunit e of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207. Antimicrob. Agents Chemother. 57, 168‒176.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Hoek A.H., Mevius D., Guerra B., Mullany P., Roberts A.P., Aarts H.J. 2011. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2, 203. https://doi.org/10.1016/j.totert.2023.100068

Article  PubMed  PubMed Central  Google Scholar 

Rather M.A., Gupta K., Mandal M. 2021. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz. J. Microbiol. 52, 1701–1718. https://doi.org/10.1007/s42770-021-00624-x

Article  PubMed  PubMed Central  Google Scholar 

Jamal M., Tasneem U., Hussain T., Andleeb S. 2015. Bacterial biofilm: Its composition, formation and role in human infections. Res. Rev. J. Microbiol. Biotechnol. 4, 1–153.

CAS  Google Scholar 

Lohse M.B., Gulati M., Johnson A.D., Nobile C.J. 2018. Development and regulation of single-and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 16, 19‒31. https://doi.org/10.1038/nrmicro.2017.107

Article  CAS  PubMed  Google Scholar 

Lewis K. 2010. Persister cells. Annu. Rev. Microbiol. 64, 357–372.

Article  CAS  PubMed  Google Scholar 

Keren I., Kaldalu N., Spoering A., Wang Y., Lewis K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13‒18.

Article  CAS  PubMed  Google Scholar 

Balaban N.Q., Helaine S., Lewis K., Ackermann M., Aldridge B., Andersson D.I., Brynildsen M.P., Bumann D., Camilli A., Collins J.J., Dehio C., Fortune S., Ghigo J.M., Hardt W.D., Harms A., Heinemann M., Hung D.T., Jenal U., Levin B.R., Michiels J., Storz G., Tan M.W., Tenson T., Van Melderen L., Zinkernagel A. 2019. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17. 441–448.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bigger J. 1944. Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet. 244, 497–500.

Article  Google Scholar 

Yahav D., Shepshelovich D., Tau N. 2021. Cost analysis of new antibiotics to treat multidrug-resistant bacterial infections: Mind the gap. Infect. Dis. Ther. 10, 621–630.

Article  PubMed  PubMed Central  Google Scholar 

Minandri F., Bonchi C., Frangipani E., Imperi F., Visca P. 2014. Promises and failures of gallium as an antibacterial agent. Future Microbiol. 9 (3), 379‒397.

Article  CAS  PubMed  Google Scholar 

Lemire J.A., Harrison J.J., Turner R.J. 2013. Antimicrobial activity of metals: Mechanisms, molecular targets, and applications. Nat. Rev. Microbiol. 11 (6), 371‒384.

Article  CAS  PubMed  Google Scholar 

Hwang I.Y., Tan M.H., Koh E., Ho C.L., Poh C.L., Chang M.W. 2014. Reprogramming microbes to be pathogen-seeking killers. ACS Synth. Biol. 3 (4), 228‒237.

Article  CAS  PubMed  Google Scholar 

Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature. 415, 389–395. https://doi.org/10.1038/415389a

Article  CAS  PubMed  Google Scholar 

Peters B.M., Shirtliff M.E., Jabra-Rizk M.A. 2010. Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathog. 6, e1001067. https://doi.org/10.1371/journal.ppat.1001067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Safronova V.N., Bolosov I.A., Panteleev P.V., Balandin S.V., Ovchinnikova T.V. 2023. Therapeutic potential and prospects for the use of antimicrobial peptides in the era of global spread of antibiotic resistance. Russ. J. Bioorg. Chem. 49 (3), 435–447.

Article  CAS  Google Scholar 

Flamm R.K., Rhomberg P.R., Simpson K.M., Farrell D.J., Sader H.S., Jones R.N. 2015. In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob Agents Chemother. 59 (3), 1751‒1754.

Article  PubMed  PubMed Central  Google Scholar 

Chawla M., Verma J., Gupta R., Das B. 2022. Antibiotic potentiators against multidrug-resistant bacteria: Discovery, development, and clinical relevance. Front. Microbiol. 13, 887251. https://doi.org/10.3389/fmicb.2022.887251

Article  PubMed  PubMed Central  Google Scholar 

Reardon S. 2014. Phage therapy gets revitalized Nature. 510 (7503), 15‒16. https://doi.org/10.1038/510015a

Article  CAS  PubMed  Google Scholar 

Letarov A.V. 2019. Sovremennye kontseptsii biologii bakteriofagov. (Modern Concepts of Bacteriophage Biology). Moscow: DeLi.

Ilyina T.S., Tolordava E.R., Romanova Yu.M. 2012. A look at phage therapy 100 years after the discovery of bacteriophages. Mol. Genet., Microbiol. Virol. 37 (3), 103‒112.

留言 (0)

沒有登入
gif