Antimicrobial Resistance Collaborators. 2022. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 399 (10325), 629‒655.
Jacoby G.A. 2017. History of drug-resistant microbes. In Antimicrobial Drug Resistance. Berlin/Heidelberg, Germany: Springer, pp. 3–8.
Perry J., Waglechner N., Wright G. 2016. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6, a025197.
Article PubMed PubMed Central Google Scholar
Barlow M., Hall B.G. 2002. Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. J. Mol. Evol. 55, 314–321.
Article CAS PubMed Google Scholar
Sir Alexander Fleming. Nobel Lecture. NobelPrize.org. n.d. Nobel Prize. https://www.nobelprize.org/prizes/medicine/1945/fleming/lecture/.
Urban-Chmiel R., Marek A., Stepień-Pyśniak D., Wieczorek K., Dec M., Nowaczek A., Osek J. 2022. Antibiotic resistance in bacteria—a review. Antibiotics. 11, 1079. https://doi.org/10.3390/antibiotics11081079
Article CAS PubMed PubMed Central Google Scholar
Munita J.M., Arias C.A. 2016. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4, 1–37.
Martinez J.L. 2011. Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Front. Microbiol. 2, 265.
Jutkina J., Marathe N.P., Flach C.F., Larsson D.G.J. 2018. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616–617, 172–178.
Zhang Y., Gu A.Z., He M., Li D., Chen J. 2017. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ. Sci. Technol. 51, 570–580.
Article CAS PubMed Google Scholar
Kumar M., Sarma D.K., Shubham S., Kumawat M., Verma V., Nina P.B., Devraj J.P., Kumar S., Singh B., Tiwari R.R 2021. Futuristic non-antibiotic therapies to combat antibiotic resistance: A review. Front. Microbiol. 12, 609459. https://doi.org/10.3389/fmicb.2021.609459
Article PubMed PubMed Central Google Scholar
Shchekotikhin A.E., Olsufieva E.N., Yankovskaya V.S. 2022. Antibiotiki i rodstvennye soedineniya. (Antibiotics and Related Compounds). Moscow: Laboratoriya znanii.
Diacon A.H., Pym A., Grobusch M., Patientia R., Rustomjee R., Page-Shipp L., Pistorius C., Krause R., Bogoshi M., Churchyard G., Venter A., Allen J., Palomino J.C., De Marez T., van Heeswijk R.P., Lounis N., Meyvisch P., Verbeeck J., Parys W., de Beule K., Andries K., Mc Neeley D.F. 2009. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360 (23), 2397–2405. https://doi.org/10.1056/NEJMoa0808427
Article CAS PubMed Google Scholar
Biukovic G., Basak S., Manimekalai M.S., Ri-shikesan S., Roessle M., Dick T., Rao S.P., Hunke C., Gruber G. 2013. Variations of subunit e of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207. Antimicrob. Agents Chemother. 57, 168‒176.
Article CAS PubMed PubMed Central Google Scholar
Van Hoek A.H., Mevius D., Guerra B., Mullany P., Roberts A.P., Aarts H.J. 2011. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2, 203. https://doi.org/10.1016/j.totert.2023.100068
Article PubMed PubMed Central Google Scholar
Rather M.A., Gupta K., Mandal M. 2021. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz. J. Microbiol. 52, 1701–1718. https://doi.org/10.1007/s42770-021-00624-x
Article PubMed PubMed Central Google Scholar
Jamal M., Tasneem U., Hussain T., Andleeb S. 2015. Bacterial biofilm: Its composition, formation and role in human infections. Res. Rev. J. Microbiol. Biotechnol. 4, 1–153.
Lohse M.B., Gulati M., Johnson A.D., Nobile C.J. 2018. Development and regulation of single-and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 16, 19‒31. https://doi.org/10.1038/nrmicro.2017.107
Article CAS PubMed Google Scholar
Lewis K. 2010. Persister cells. Annu. Rev. Microbiol. 64, 357–372.
Article CAS PubMed Google Scholar
Keren I., Kaldalu N., Spoering A., Wang Y., Lewis K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13‒18.
Article CAS PubMed Google Scholar
Balaban N.Q., Helaine S., Lewis K., Ackermann M., Aldridge B., Andersson D.I., Brynildsen M.P., Bumann D., Camilli A., Collins J.J., Dehio C., Fortune S., Ghigo J.M., Hardt W.D., Harms A., Heinemann M., Hung D.T., Jenal U., Levin B.R., Michiels J., Storz G., Tan M.W., Tenson T., Van Melderen L., Zinkernagel A. 2019. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17. 441–448.
Article CAS PubMed PubMed Central Google Scholar
Bigger J. 1944. Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet. 244, 497–500.
Yahav D., Shepshelovich D., Tau N. 2021. Cost analysis of new antibiotics to treat multidrug-resistant bacterial infections: Mind the gap. Infect. Dis. Ther. 10, 621–630.
Article PubMed PubMed Central Google Scholar
Minandri F., Bonchi C., Frangipani E., Imperi F., Visca P. 2014. Promises and failures of gallium as an antibacterial agent. Future Microbiol. 9 (3), 379‒397.
Article CAS PubMed Google Scholar
Lemire J.A., Harrison J.J., Turner R.J. 2013. Antimicrobial activity of metals: Mechanisms, molecular targets, and applications. Nat. Rev. Microbiol. 11 (6), 371‒384.
Article CAS PubMed Google Scholar
Hwang I.Y., Tan M.H., Koh E., Ho C.L., Poh C.L., Chang M.W. 2014. Reprogramming microbes to be pathogen-seeking killers. ACS Synth. Biol. 3 (4), 228‒237.
Article CAS PubMed Google Scholar
Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature. 415, 389–395. https://doi.org/10.1038/415389a
Article CAS PubMed Google Scholar
Peters B.M., Shirtliff M.E., Jabra-Rizk M.A. 2010. Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathog. 6, e1001067. https://doi.org/10.1371/journal.ppat.1001067
Article CAS PubMed PubMed Central Google Scholar
Safronova V.N., Bolosov I.A., Panteleev P.V., Balandin S.V., Ovchinnikova T.V. 2023. Therapeutic potential and prospects for the use of antimicrobial peptides in the era of global spread of antibiotic resistance. Russ. J. Bioorg. Chem. 49 (3), 435–447.
Flamm R.K., Rhomberg P.R., Simpson K.M., Farrell D.J., Sader H.S., Jones R.N. 2015. In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob Agents Chemother. 59 (3), 1751‒1754.
Article PubMed PubMed Central Google Scholar
Chawla M., Verma J., Gupta R., Das B. 2022. Antibiotic potentiators against multidrug-resistant bacteria: Discovery, development, and clinical relevance. Front. Microbiol. 13, 887251. https://doi.org/10.3389/fmicb.2022.887251
Article PubMed PubMed Central Google Scholar
Reardon S. 2014. Phage therapy gets revitalized Nature. 510 (7503), 15‒16. https://doi.org/10.1038/510015a
Article CAS PubMed Google Scholar
Letarov A.V. 2019. Sovremennye kontseptsii biologii bakteriofagov. (Modern Concepts of Bacteriophage Biology). Moscow: DeLi.
Ilyina T.S., Tolordava E.R., Romanova Yu.M. 2012. A look at phage therapy 100 years after the discovery of bacteriophages. Mol. Genet., Microbiol. Virol. 37 (3), 103‒112.
留言 (0)