World Health Organization. 2021. 10 Global Health Issues to Track in 2021. https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021.
Antimicrobial Resistance Collaborators. 2022. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 399, 629–655.
Manyi-Loh C., Mamphweli S., Meyer E., Okoh A. 2018. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules. 23, 795–842.
Article PubMed PubMed Central Google Scholar
Olsufyeva E.N., Yankovskaya V.S., Dunchenko N.I. 2022. Review of the risks of antibiotic contamination in dairy products. Antibiot. Khimioter. 67 (7–8), 82–96.
Mann A., Nehra K., Rana J.S., Dahiya T. 2021. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Curr. Res. Microb. Sci. 2, 100030–100043.
CAS PubMed PubMed Central Google Scholar
Painuli S., Semwal P., Sharma R., Akash S. 2023. A new threat to the society. Health Sci. Rep. 6, e1480–e1482.
Article PubMed PubMed Central Google Scholar
WHO Strategic Priorities on Antimicrobial Resistance Preserving antimicrobials for today and tomorrow. 18 May 2022. https://www.who.int/publications/i/item/ 9789240041387
Mirzaei R., Campoccia D., Ravaioli S., Arciola C.R. 2024. Emerging issues and initial insights into bacterial biofilms: From orthopedic infection to metabolomics. Antibiotics. 13, 184–206.
Article CAS PubMed PubMed Central Google Scholar
Olsufyeva E.N., Yankovskaya V.S. 2020. Main trends in the design of semi-synthetic antibiotics of a new generation. Russ. Chem. Rev. 89 (3), 339–378.
Rubinstein E., Keynan Y. 2014. Vancomycin revisited—60 years later. Front. Public Health. 2, 217–223.
Article PubMed PubMed Central Google Scholar
Vimberg V. 2021. Teicoplanin—a new use for an old drug in the COVID-19 era? Pharmaceuticals. 14, 1227–1238.
Article CAS PubMed PubMed Central Google Scholar
Goldberg L.E., Stepanova E.S., Vertogradova T.P., Shevnyuk L.A., Shepelevtseva N.G. 1987. Preclinical toxicological studies of the new antibiotic eremomycin I. Acute toxicity in laboratory animals. Antibiot. Med. Biotekhnol. 32, 910–915.
Van Groesen E., Innocenti P., Martin N.I. 2022. Recent advances in the development of semisynthetic glycopeptide antibiotics: 2014–2022. ACS Infect. Dis. 8, 1381–1407.
Article CAS PubMed PubMed Central Google Scholar
Zamone W., Prado I.R.S., Balbi A.L., Ponce D. 2019. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clin. Exp. Pharmacol. Physiol. 46, 292–301.
Li G., Walker M.J., De Oliveira D.M.P. 2023. Vancomycin resistance in Enterococcus and Staphylococcus aureus. Microorganisms. 11, 24–74.
Walsh C., Wencewicz T. 2016. Antibiotics: Challenges, Mechanisms, Opportunities. Washington: ASM Press.
Bugg T.D.H., Wright G.D., Dutka-Malen S., Arthur M., Courvalin P., Walsh C.T. 1991. Molecular basis of vancomycin resistance in Enterococcus faecium BM4147: Biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry. 30, 10408–10415.
Article CAS PubMed Google Scholar
Healy V.L., Lessard I.A.D., Roper D.I., Knox J.R., Walsh C.T. 2000. Vancomycin resistance in enterococci: Reprogramming of the D-Ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. Chem. Biol. 7, R109–R119.
Article CAS PubMed Google Scholar
Hughes C.S., Longo E., Phillips-Jones M.K., Hussain R. 2017. Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci. Biochim. Biophys. Acta. 1861, 1951–1959.
Article CAS PubMed Central Google Scholar
Vimberg V., Cavanagh J.P., Benada O., Kofronova O., Hjerde E., Zieglerova L., Balikova Novotna G. 2018. Teicoplanin resistance in Staphylococcus haemolyticus is associated with mutations in histidine kinases VraS and WalK. Diagn. Microbiol. Infect. Dis. 90, 233–240.
Article CAS PubMed Google Scholar
Cong Y., Yang S., Rao X. 2020. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 21, 169–176.
Olsufyeva E.N., Tevyashova A.N. 2017. Synthesis, properties, and mechanism of action of new generation of polycyclic glycopeptide antibiotics. Curr. Top. Med. Chem. 17, 2166‒2198.
Article CAS PubMed Google Scholar
Good V.M., Gwinn M.N., Knowles D.J.C. 1990. MM45289, a potent glycopeptide antibiotic which interacts weakly with diacetyl-L-lysyl-D-alanyl-D-alanine. J. Antibiotics. 43, 550–555.
Bykov E.E., Mirchink E.P., Isakova E.B., Bychkova E.N., Olsufyeva E.N., Tevyashova A.N. 2017. Study of antibacterial activity and binding energy with the peptide ligand of the hybrid antibiotics vancomycin-azithromycin and eremomycin-azithromycin. Antibiot. Khimioter. 62 (3–4), 10–17.
Olsufyeva E.N., Berdnikova T.F., Miroshnikova O.V., Rerznikova M.I., Preobrazhenskaya M.N. 1999. Chemical modification of antibiotic eremomycin at the asparagin side chain. J. Antibiot. 52, 319–324.
Miroshnikova O.V., Berdnikova T.F., Olsufyeva E.N., Pavlov A.Y., Reznikova M.I., Preobrazhenskaya M.N., Malabarba A., Ciabatti R., Colombo L. 1996. A modification of N-terminal aminoacid in the eremomycin aglycone. J. Antibiot. 49, 1157–1161.
Malabarba A., Ciabatti R., Gerli E., Ferrari P., Colombo L. Ripamonti R., Olsufyeva E.N., Pavlov A.Y., Reznikova M.I., Lazhko E.I., Preobrazhenskaya M.N. 1997. Synthetic glycopeptides. II. Substitution of aminoacides 1 and 3 in teicoplanin aglycon. J. Antibiot. 50, 70–81.
Malabarba A., Ciabatti R., Gerli E., Ferrari P., Colombo L. Ripamonti R., Olsufyeva E.N., Pavlov A.Y., Reznikova M.I., Lazhko E.I., Preobrazhenskaya M.N. 1997. Synthetic glycopeptides. II. Substitution of aminoacides 1 and 3 in teicoplanin aglycon. J. Antibiot. 50, 70–81.
Malabarba A., Ciabatti R., Kettenring J., Ferrari P., Vekey K., Bellagio E, Denaro M. 1996. Structural modification of the active site in teicoplanin and related glycopeptides. Reductive hydrolysis of the 1,2- and 2,3-peptide bonds. J. Org. Chem. 61, 2137–2150.
Okano A., Nakayama A., Wu K., Lindsey E.A., Schammel A.W., Feng Y., Collins K.C., Boger D.L. 2015. Total syntheses and initial evaluation of [Ψ[C(=S)NH]Tpg4]vancomycin, [Ψ[C(=NH)NH]Tpg4]vancomycin, [Ψ[CH2NH]Tpg4]vancomycin and their (4-chlorobiphenyl)methyl derivatives: synergistic binding pocket and peripheral modifications for the glycopeptide antibiotics. J. Am. Chem. Soc. 137 (10), 3693–3704.
Article CAS PubMed PubMed Central Google Scholar
Moore M.J., Qu S., Tan C., Cai Y., Mogi Y., Keith D.J., Boger D.L. 2020. Next-generation total synthesis of vancomycin. J. Am. Chem. Soc. 142 (37), 16039–16050.
Article CAS PubMed PubMed Central Google Scholar
Boger D.L., Kim S.H., Miyazaki S., Strittmatter H., Weng J.H., Mori Y., Rogel O., Castle S.L., McAtee J.J. 2000. Total synthesis of the teicoplanin aglycon. J. Am. Chem. Soc. 122, 7416–7417.
Xie J., Okano A., Pierce J.G., James R.C., Stamm S., Crane C.M., Boger D.L. 2012. Total synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon, [Ψ[C(═NH)NH]Tpg4]vancomycin aglycon, and related key compounds: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J. Am. Chem. Soc. 134, 1284–1297.
Article CAS PubMed PubMed Central Google Scholar
Olsuf'eva E.N., Berdnikova T.F., Dokshina N.Yu., Lomakina N.N., Orlova G.I., Malkova I.V., Prozorova I.N. 1989. Modification of eremomycin by amine groups. Antibiot. Khimioter. 34, 352–358.
留言 (0)