Unveiling Neisseria gonorrhoeae Survival: Genetic Variability, Pathogenesis, and Antimicrobial Drug Resistance

Quillin S.J., Seifert H.S. 2018. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 16, 226.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Humbert M.V., Christodoulides M. 2020. Atypical, yet not infrequent, infections with Neisseria species. Pathogens. 9, 1.

Google Scholar 

Martín-Sánchez M., Ong J.J., Fairley C.K., Chen M.Y., Williamson D.A., Maddaford K., Aung E.T., Carter G., Bradshaw C.S., Chow E.P.F. 2020. Clinical presentation of asymptomatic and symptomatic heterosexual men who tested positive for urethral gonorrhoea at a sexual health clinic in Melbourne, Australia. BMC Infect. Dis. 20, 486.

Article  PubMed  PubMed Central  Google Scholar 

Martín-Sánchez M., Fairley C.K., Ong J.J., Maddaford K., Chen M.Y., Williamson D.A., Bradshaw C.S., Chow E.P.F. 2020. Clinical presentation of asymptomatic and symptomatic women who tested positive for genital gonorrhoea at a sexual health service in Melbourne, Australia. Epidemiol. Infect. 148, e240.

Article  PubMed  PubMed Central  Google Scholar 

WHO 2022. Global Health Sector Strategies on, Respectively, HIV, Viral Hepatitis and Sexually Transmitted Infections for the Period 2022–2030. Geneva, Switzerland: World Health Organization.

Google Scholar 

Tobiason D.M., Seifert H.S. 2006. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol. 4, e185.

Article  PubMed  PubMed Central  Google Scholar 

Tobiason D.M., Seifert H.S. 2010. Genomic content of Neisseria species. J. Bacteriol. 192, 2160–2168.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manoharan-Basil S.S., Gestels Z., Abdellati S., Akomoneh E.A., Kenyon C. 2023. Evidence of horizontal gene transfer within porB in 19018 whole-genome Neisseria spp. isolates: A global phylogenetic analysis. Microbial Genomics. 9, mgen001041.

Manoharan-Basil S.S., González N., Laumen J.G.E., Kenyon C. 2022. Horizontal gene transfer of fluoroquinolone resistance-conferring genes from commensal Neisseria to Neisseria gonorrhoeae: A global phylogenetic analysis of 20047 isolates. Front. Microbiol. 13, 793612.

Article  PubMed  PubMed Central  Google Scholar 

Manoharan-Basil S.S., Laumen J.G.E., Van Dijck C., De Block T., De Baetselier I., Kenyon C. 2021. Evidence of horizontal gene transfer of 50S ribosomal genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front. Microbiol. 12, 683901.

Article  PubMed  PubMed Central  Google Scholar 

Zweig M., Schork S., Koerdt A., Siewering K., Sternberg C., Thormann K., Albers S.V., Molin S., van der Does C. 2014. Secreted single-stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae. Environ. Microbiol. 16, 1040–1052.

Article  CAS  PubMed  Google Scholar 

Dillard J.P., Seifert H.S. 2001. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol. Microbiol. 41, 263–277.

Article  CAS  PubMed  Google Scholar 

Shaskolskiy B., Kandinov I., Dementieva E., Gryadunov D. 2022. Antibiotic resistance in Neisseria gonorrhoeae: Challenges in research and treatment. Microorganisms. 10, 1699.

Article  PubMed  PubMed Central  Google Scholar 

Golparian D., Vestberg N., Södersten W., Jacobsson S., Ohnishi M., Fang H., Bhattarai K.H., Unemo M. 2023. Multidrug-resistant Neisseria gonorrhoeae isolate SE690: Mosaic penA-60.001 gene causing ceftriaxone resistance internationally has spread to the more antimicrobial-susceptible genomic lineage, Sweden, September 2022. Euro Surveill. 28, 2300125.

Article  PubMed  PubMed Central  Google Scholar 

Maubaret C., Camelena F., Mrimeche M., Braille A., Liberge M., Mainardis M., Guillaume C., Noel F., Bebear C., Molina J.M., Lot F., Chazelle E., Bercot B. 2023. Two cases of extensively drug-resistant (XDR) Neisseria gonorrhoeae infection combining ceftriaxone-resistance and high-level azithromycin resistance, France, November 2022 and May 2023. Euro Surveill. 28, 2300456.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pleininger S., Indra A., Golparian D., Heger F., Schindler S., Jacobsson S., Heidler S., Unemo M. 2022. Extensively drug-resistant (XDR) Neisseria gonorrhoeae causing possible gonorrhoea treatment failure with ceftriaxone plus azithromycin in Austria, April 2022. Euro Surveill. 27, 2200455.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golparian D., Unemo M. 2022. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert. Rev. Mol. Diagnostics. 22, 29–48.

Article  CAS  Google Scholar 

Unemo M., Shafer W.M. 2014. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev. 27, 587–613.

Article  PubMed  PubMed Central  Google Scholar 

Jones R.A., Jerse A.E., Tang C.M. 2024. Gonococcal PorB: A multifaceted modulator of host immune responses. Trends Microbiol. 32, 355–364.

Article  CAS  PubMed  Google Scholar 

Walker E., van Niekerk S., Hanning K., Kelton W., Hicks J. 2023. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front. Microbiol. 14, 1119834.

Article  PubMed  PubMed Central  Google Scholar 

Werner L.M., Alcott A., Mohlin F., Ray J.C., Belcher Dufrisne M., Smirnov A., Columbus L., Blom A.M., Criss A.K. 2023. Neisseria gonorrhoeae co-opts C4b-binding protein to enhance complement-independent survival from neutrophils. PLoS Pathog. 19, e1011055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Packiam M., Wu H., Veit S.J., Mavrogiorgos N., Jerse A.E., Ingalls R.R. 2012. Protective role of Toll-like receptor 4 in experimental gonococcal infection of female mice. Mucosal Immunol. 5, 19–29.

Article  CAS  PubMed  Google Scholar 

Mavrogiorgos N., Mekasha S., Yang Y., Kelliher M.A., Ingalls R.R. 2014. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response. Innate Immun. 20, 377–389.

Article  PubMed  Google Scholar 

Płaczkiewicz J., Adamczyk-Popławska M., Kozłowska E., Kwiatek A. 2022. Both Neisseria gonorrhoeae and Neisseria sicca induce cytokine secretion by infected human cells, but only Neisseria gonorrhoeae upregulates the expression of long non-coding RNAs. Pathogens. 11, 4.

Article  Google Scholar 

Naumann M., Wessler S., Bartsch C., Wieland B., Meyer T.F. 1997. Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor kappaB and activator protein 1 and the induction of inflammatory cytokines. J. Exp. Med. 186, 247–258.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendes A.C., Ciccone M., Gazolla B., Bahia D. 2020. Epithelial haven and autophagy breakout in gonococci infection. Front. Cell Dev. Biol. 8, 439.

Article  PubMed  PubMed Central  Google Scholar 

Palmer A., Criss A.K. 2018. Gonococcal defenses against antimicrobial activities of neutrophils. Trends Microbiol. 26, 1022–1034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Escobar A., Rodas P.I., Acuña-Castillo C. 2018. Macrophage-Neisseria gonorrhoeae interactions: A better understanding of pathogen mechanisms of immunomodulation. Front. Immunol. 9, 3044.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Château A., Seifert H.S. 2016. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages. Cell. Microbiol. 18, 546–560.

Article  PubMed  Google Scholar 

Criss A.K., Seifert H.S. 2012. A bacterial siren song: Intimate interactions between Neisseria and neutrophils. Nat. Rev. Microbiol. 10, 178–190.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y., Liu W., Russell M.W. 2014. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol. 7, 165–176.

Article  CAS 

留言 (0)

沒有登入
gif