Quillin S.J., Seifert H.S. 2018. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 16, 226.
Article CAS PubMed PubMed Central Google Scholar
Humbert M.V., Christodoulides M. 2020. Atypical, yet not infrequent, infections with Neisseria species. Pathogens. 9, 1.
Martín-Sánchez M., Ong J.J., Fairley C.K., Chen M.Y., Williamson D.A., Maddaford K., Aung E.T., Carter G., Bradshaw C.S., Chow E.P.F. 2020. Clinical presentation of asymptomatic and symptomatic heterosexual men who tested positive for urethral gonorrhoea at a sexual health clinic in Melbourne, Australia. BMC Infect. Dis. 20, 486.
Article PubMed PubMed Central Google Scholar
Martín-Sánchez M., Fairley C.K., Ong J.J., Maddaford K., Chen M.Y., Williamson D.A., Bradshaw C.S., Chow E.P.F. 2020. Clinical presentation of asymptomatic and symptomatic women who tested positive for genital gonorrhoea at a sexual health service in Melbourne, Australia. Epidemiol. Infect. 148, e240.
Article PubMed PubMed Central Google Scholar
WHO 2022. Global Health Sector Strategies on, Respectively, HIV, Viral Hepatitis and Sexually Transmitted Infections for the Period 2022–2030. Geneva, Switzerland: World Health Organization.
Tobiason D.M., Seifert H.S. 2006. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol. 4, e185.
Article PubMed PubMed Central Google Scholar
Tobiason D.M., Seifert H.S. 2010. Genomic content of Neisseria species. J. Bacteriol. 192, 2160–2168.
Article CAS PubMed PubMed Central Google Scholar
Manoharan-Basil S.S., Gestels Z., Abdellati S., Akomoneh E.A., Kenyon C. 2023. Evidence of horizontal gene transfer within porB in 19018 whole-genome Neisseria spp. isolates: A global phylogenetic analysis. Microbial Genomics. 9, mgen001041.
Manoharan-Basil S.S., González N., Laumen J.G.E., Kenyon C. 2022. Horizontal gene transfer of fluoroquinolone resistance-conferring genes from commensal Neisseria to Neisseria gonorrhoeae: A global phylogenetic analysis of 20047 isolates. Front. Microbiol. 13, 793612.
Article PubMed PubMed Central Google Scholar
Manoharan-Basil S.S., Laumen J.G.E., Van Dijck C., De Block T., De Baetselier I., Kenyon C. 2021. Evidence of horizontal gene transfer of 50S ribosomal genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front. Microbiol. 12, 683901.
Article PubMed PubMed Central Google Scholar
Zweig M., Schork S., Koerdt A., Siewering K., Sternberg C., Thormann K., Albers S.V., Molin S., van der Does C. 2014. Secreted single-stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae. Environ. Microbiol. 16, 1040–1052.
Article CAS PubMed Google Scholar
Dillard J.P., Seifert H.S. 2001. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol. Microbiol. 41, 263–277.
Article CAS PubMed Google Scholar
Shaskolskiy B., Kandinov I., Dementieva E., Gryadunov D. 2022. Antibiotic resistance in Neisseria gonorrhoeae: Challenges in research and treatment. Microorganisms. 10, 1699.
Article PubMed PubMed Central Google Scholar
Golparian D., Vestberg N., Södersten W., Jacobsson S., Ohnishi M., Fang H., Bhattarai K.H., Unemo M. 2023. Multidrug-resistant Neisseria gonorrhoeae isolate SE690: Mosaic penA-60.001 gene causing ceftriaxone resistance internationally has spread to the more antimicrobial-susceptible genomic lineage, Sweden, September 2022. Euro Surveill. 28, 2300125.
Article PubMed PubMed Central Google Scholar
Maubaret C., Camelena F., Mrimeche M., Braille A., Liberge M., Mainardis M., Guillaume C., Noel F., Bebear C., Molina J.M., Lot F., Chazelle E., Bercot B. 2023. Two cases of extensively drug-resistant (XDR) Neisseria gonorrhoeae infection combining ceftriaxone-resistance and high-level azithromycin resistance, France, November 2022 and May 2023. Euro Surveill. 28, 2300456.
Article CAS PubMed PubMed Central Google Scholar
Pleininger S., Indra A., Golparian D., Heger F., Schindler S., Jacobsson S., Heidler S., Unemo M. 2022. Extensively drug-resistant (XDR) Neisseria gonorrhoeae causing possible gonorrhoea treatment failure with ceftriaxone plus azithromycin in Austria, April 2022. Euro Surveill. 27, 2200455.
Article CAS PubMed PubMed Central Google Scholar
Golparian D., Unemo M. 2022. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert. Rev. Mol. Diagnostics. 22, 29–48.
Unemo M., Shafer W.M. 2014. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev. 27, 587–613.
Article PubMed PubMed Central Google Scholar
Jones R.A., Jerse A.E., Tang C.M. 2024. Gonococcal PorB: A multifaceted modulator of host immune responses. Trends Microbiol. 32, 355–364.
Article CAS PubMed Google Scholar
Walker E., van Niekerk S., Hanning K., Kelton W., Hicks J. 2023. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front. Microbiol. 14, 1119834.
Article PubMed PubMed Central Google Scholar
Werner L.M., Alcott A., Mohlin F., Ray J.C., Belcher Dufrisne M., Smirnov A., Columbus L., Blom A.M., Criss A.K. 2023. Neisseria gonorrhoeae co-opts C4b-binding protein to enhance complement-independent survival from neutrophils. PLoS Pathog. 19, e1011055.
Article CAS PubMed PubMed Central Google Scholar
Packiam M., Wu H., Veit S.J., Mavrogiorgos N., Jerse A.E., Ingalls R.R. 2012. Protective role of Toll-like receptor 4 in experimental gonococcal infection of female mice. Mucosal Immunol. 5, 19–29.
Article CAS PubMed Google Scholar
Mavrogiorgos N., Mekasha S., Yang Y., Kelliher M.A., Ingalls R.R. 2014. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response. Innate Immun. 20, 377–389.
Płaczkiewicz J., Adamczyk-Popławska M., Kozłowska E., Kwiatek A. 2022. Both Neisseria gonorrhoeae and Neisseria sicca induce cytokine secretion by infected human cells, but only Neisseria gonorrhoeae upregulates the expression of long non-coding RNAs. Pathogens. 11, 4.
Naumann M., Wessler S., Bartsch C., Wieland B., Meyer T.F. 1997. Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor kappaB and activator protein 1 and the induction of inflammatory cytokines. J. Exp. Med. 186, 247–258.
Article CAS PubMed PubMed Central Google Scholar
Mendes A.C., Ciccone M., Gazolla B., Bahia D. 2020. Epithelial haven and autophagy breakout in gonococci infection. Front. Cell Dev. Biol. 8, 439.
Article PubMed PubMed Central Google Scholar
Palmer A., Criss A.K. 2018. Gonococcal defenses against antimicrobial activities of neutrophils. Trends Microbiol. 26, 1022–1034.
Article CAS PubMed PubMed Central Google Scholar
Escobar A., Rodas P.I., Acuña-Castillo C. 2018. Macrophage-Neisseria gonorrhoeae interactions: A better understanding of pathogen mechanisms of immunomodulation. Front. Immunol. 9, 3044.
Article CAS PubMed PubMed Central Google Scholar
Château A., Seifert H.S. 2016. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages. Cell. Microbiol. 18, 546–560.
Criss A.K., Seifert H.S. 2012. A bacterial siren song: Intimate interactions between Neisseria and neutrophils. Nat. Rev. Microbiol. 10, 178–190.
Article CAS PubMed PubMed Central Google Scholar
Liu Y., Liu W., Russell M.W. 2014. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol. 7, 165–176.
留言 (0)