Hall-Stoodley L., Costerton J.W., Stoodley P. 2004. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108.
Article CAS PubMed Google Scholar
Nobile C.J., Johnson A.D. 2015. Candida albicans biofilms and human disease. Annu. Rev. Microbiol. 69, 71–92.
Article CAS PubMed PubMed Central Google Scholar
Wolcott R., Costerton J.W., Raoult D., Culter S.J. 2013. The polymicrobial nature of biofilm infection. Clin. Microbiol. Infect. 19, 107–112.
Article CAS PubMed Google Scholar
Goetghebeur M., Landry P.A., Han D., Vicente C. 2007. Methicillin resistant Staphylococcus aureus: A public health issue with economic consequences. Can. J. Infect. Dis. Med. Microbiol. 18, 27–34.
Article PubMed PubMed Central Google Scholar
Silva-Santana G., Lenzi-Almeida K.C., Lopes V.G.S., Aguiar-Alves F. 2016. Biofilm formation in catheter-related infections by panton-valentine leukocidin-producing Staphylococcus aureus. Int. Microbiol. 19, 199–207.
Peters B.M., Jabra-Rizk M.A., O’May G.A., Costerton J.W., Shirtliff M.E. 2012. Polymicrobial interactions in biofilms: Impact on pathogenesis and human disease. Clin. Microbiol. Rev. 25, 193–213.
Article PubMed PubMed Central Google Scholar
Klotz S.A., Chasin B.S., Powell B., Gaur N.K., Lipke P.N. 2007. Polymicrobial bloodstream infections involving Candida species: Analysis of patients and review of the literature. Diagn. Microbiol. Infect. Dis. 59, 401–406.
Article CAS PubMed Google Scholar
Pfaller M.A., Diekema D.J. 2007. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 20, 133–163.
Article CAS PubMed PubMed Central Google Scholar
Harriott M.M., Noverr M.C. 2010. Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrob. Agents Chemother. 54, 3746–3755.
Article CAS PubMed PubMed Central Google Scholar
Lebeaux D., Ghigo J.M., Beloin C. 2014. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78, 510–543.
Article PubMed PubMed Central Google Scholar
Borlinghaus J., Albrecht F., Gruhlke M.C.H., Nwachukwu I.D., Slusarenko A.J. 2014. Allicin: Chemistry and biological properties. Molecules. 19, 12591‒12618.
Article PubMed PubMed Central Google Scholar
Sharifi-Rad J., Hoseini Alfatemi S., Sharifi Rad M., Iriti M. 2014. Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant Staphylococcus aureus spp. Ann. Med. Health Sci. Res. 4 (6), 863‒868.
Article CAS PubMed PubMed Central Google Scholar
Muller A., Eller J., Albrecht F., Prochnow P., Kuhlmann K., Bandow J.E., Slusarenko A.J., Leichert L.I.O. 2016. Allicin induces thiol stress in bacteria through S-allylmercapto modification of protein systeines. J. Biol. Chem. 291, 11477–11490.
Article PubMed PubMed Central Google Scholar
Leontiev R., Hohaus N., Jacob C., Gruhlke M.C.H., Slusarenko A.J. 2018. A comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Sci. Rep. 8, 6763.
Article PubMed PubMed Central Google Scholar
Revtovich S., Morozova E., Kulikova V., Koval V., Anufrieva N., Nikulin A., Demidkina T. 2020. Sulfoxides of sulfur-containing amino acids are suicide substrates of Citrobacter freundii methionine γ-lyase. Structural bases of the enzyme inactivation. Biochimie. 168, 190–197.
Article CAS PubMed Google Scholar
Anufrieva N.V., Morozova E.A., Kulikova V.V., Bazhulina N.P., Manukhov I.V., Degtev D.I., Gnuchikh E.Y., Rodionov A.N., Zavilgelsky G.B., Demidkina T.V. 2015. Sulfoxides, analogues of L-methionine and L-cysteine as pro-drugs against Gram-positive and Gram-negative bacteria. Acta Naturae. 7 (27), 128–135.
Article CAS PubMed PubMed Central Google Scholar
Revtovich S., Lyfenko A., Tkachev Y., Kulikova V., Koval V., Puchkov V., Anufrieva N., Solyev P., Morozova E. 2023. Anticandidal activity of in situ methionine γ-lyase-based thiosulfinate generation system vs. synthetic thiosulfinates. Pharmaceuticals. 16 (12), 1695.
Article CAS PubMed PubMed Central Google Scholar
2008. M27-A3 Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. National Committee for Clinical and Laboratory Standards, Wayne PA. 28 (14). https://clsi.org/media/1461/m27a3_sample.pdf
2018. M07–A11 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. Clinical and Laboratory Standards Institute, Wayne PA. 11th ed. 38 (2). https://clsi.org/media/1928/m07ed11_sample.pdf.
Marinescu M., Popa C.V. 2022. Pyridine compounds with antimicrobial and antiviral activities. Int. J. Mol. Sci. 23 (10), 5659.
Article CAS PubMed PubMed Central Google Scholar
Karunanidhi A., Ghaznavi-Rad E., Jeevajothi Nathan J., Joseph N., Chigurupati S., Mohd Fauzi F., Pichika M.R., Hamat R.A., Lung L.T.T., van Belkum A., Neela V. 2019. Bioactive 2-(methyldithio)oyridine-3-carbonitrile from persian shallot (Allium stipitatum Regel.) exerts broad-spectrum antimicrobial activity. Molecules. 24 (6), 1003.
Article CAS PubMed PubMed Central Google Scholar
Roseblade A., Ung A., Bebawy M. 2017. Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer. Acta Pharm. Sin. 38 (10), 1353‒1368.
Stellenboom N., Hunter R., Caira M. R., Bourne S.A., Cele, K. Qwebani T., le Roex T. 2007. Synthesis and inclusion of S-aryl alkylthiosulfinates as stable allicin mimics. ARKIVOC. 9, 53‒63.
Mehendale H.M. 2010. 7.19—Halogenated hydrocarbons. In Comprehensive Toxicology, 2nd ed. vol. 7. McQueen C.A., Ed. Elsevier, pp. 459‒474. https://doi.org/10.1016/B978-0-08-046884-6.00824-1
留言 (0)