Redox Status and Protein Glutathionylation in Binase-Treated HPV16-Positive SiHa Carcinoma Cells

Green R.M., Graham M., O’Donovan M.R., Chipman J.K., Hodges N.J. 2006. Subcellular compartmentalization of glutathione: Correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis. 21, 383–390. https://doi.org/10.1093/mutage/gel043

Article  CAS  PubMed  Google Scholar 

Kennedy L., Sandhu J.K., Harper M.E., Cuperlovic-Culf M. 2020. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules. 10, 1429. https://doi.org/10.3390/biom10101429

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schafer F.Q., Buettner G.R. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol-. Med. 30, 1191–1212. https://doi.org/10.1016/s0891-5849(01)00480-4

Article  CAS  Google Scholar 

Buettner G.R., Wagner B.A., Rodgers V.G. 2013. Quantitative redox biology: An approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem. Biophys. 67, 477–483. https://doi.org/10.1007/s12013-011-9320-3

Article  CAS  PubMed  Google Scholar 

Townsend D.M., Tew K.D., Tapiero H. 2003. The importance of glutathione in human disease. Biomed. Pharmacother. 57, 145–155. https://doi.org/10.1016/S0753-3322(03)00043-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vafa O., Wade M., Kern S., Beeche M., Pandita T.K., Hampton G.M., Wahl G.M. 2002. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: A mechanism for oncogene-induced genetic instability. Mol. Cell. 9, 1031–1044. https://doi.org/10.1016/S1097-2765(02)00520-8

Article  CAS  PubMed  Google Scholar 

Weinberg F., Hamanaka R., Wheaton W.W., Weinberg S., Joseph J., Lopez M., Kalyanaraman B., Mutlu G., Budinger S., Chandel N.S. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U. S. A. 107, 8788–8793. https://doi.org/10.1073/pnas.1003428107

Article  PubMed  PubMed Central  Google Scholar 

Ballatori N., Krance S.M., Marchan R., Hammond C.L. 2009. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol. Aspects Med. 30, 13–28. https://doi.org/10.1016/j.mam.2008.08.004

Article  CAS  PubMed  Google Scholar 

Mieyal J.J., Gallogly M.M., Qanungo S., Sabens E.A., Shelton M.D. 2008. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal. 10, 1941–1988. https://doi.org/10.1089/ars.2008.2089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller O.G., Mieyal J.J. 2015. Sulfhydryl-mediated redox signaling in inflammation: Role in neurodegenerative diseases. Arch. Toxicol. 89, 1439–1467. https://doi.org/10.1007/s00204-015-1496-7

Article  CAS  Google Scholar 

Xue X., Wang B., Du W., Zhang C., Song Y., Cai Y., Cen D., Wang L., Xiong Y., Jiang P., Zhu S., Zhao K.N., Zhang L. 2016. Generation of affibody molecules specific for HPV16 E7 recognition. Oncota-rget. 7, 73995–74005. https://doi.org/10.18632/oncotarget.12174

Article  Google Scholar 

Wondrak G.T. 2009. Redox-directed cancer therapeutics: Molecular mechanisms and opportunities. Antio-xid. Redox Signal. 11, 3013–3069. https://doi.org/10.1089/ars.2009.2541

Article  CAS  Google Scholar 

Tew K.D., Townsend D.M. 2011. Redox platforms in cancer drug discovery and development. Curr. Opin. Chem. Biol. 15, 156–161. https://doi.org/10.1016/j.cbpa.2010.10.016

Mironova N.L., Petrushanko I.Y., Patutina O.A., Sen’kova A.V., Simonenko O.V., Mitkevich V.A., Markov O.V., Zenkova M.A., Makarov A.A. 2013. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells. Cell Cycle. 12, 2120–2131. https://doi.org/10.4161/cc.25164

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitkevich V.A., Kretova O.V., Petrushanko I.Y., Burnysheva K.M., Sosin D.V., Simonenko O.V., Ilinskaya O.N., Tchurikov N.A., Makarov A.A. 2013. Ribonuclease binase apoptotic signature in leukemic Kasumi-1 cells. Biochimie. 95, 1344–1349. https://doi.org/10.1016/j.biochi.2013.02.016

Article  CAS  PubMed  Google Scholar 

Burnysheva K.M., Petrushanko I.Y., Spirin P.V., Prassolov V.S., Makarov A.A., Mitkevich V.A. 2016. Ribonuclease binase induces death in T-cell acute lymphoblastic leukemia cells by apoptosis. Mol. Biol. (Moscow). 50, 302–306. https://doi.org/10.1134/S0026893316020035

Article  CAS  Google Scholar 

Shulga A.A., Okorokov A.L., Panov K.I., Kurbanov F.T., Chernov B.K., Skryabin K.G., Kirpichnikov M.P. 1994. Overexpression of Bacillus intermedius 7P ribonuclease (binase) in Escherichia coli. Mol. Biol. 28 (2), 303–310.

Google Scholar 

Mitkevich V.A., Burnysheva K.M., Petrushanko I.Y., Adzhubei A.A., Schulga A.A., Chumakov P.M., Makarov A.A. 2017. Binase treatment increases interferon sensitivity and apoptosis in SiHa cervical carcinoma cells by downregulating E6 and E7 human papilloma virus oncoproteins. Oncotarget. 8, 72666‒72675. https://doi.org/10.18632/oncotarget.20199

Article  PubMed  PubMed Central  Google Scholar 

Pal D., Rai A., Checker R., Patwardhan R.S., Singh B., Sharma D., Sandur S.K. 2021. Role of protein S-glutathionylation in cancer progression and development of resistance to anti-cancer drugs. Arch. Biochem. Biophys. 704, 108890. https://doi.org/10.1016/j.abb.2021.108890

Article  CAS  PubMed  Google Scholar 

Ilinskaya O.N., Singh I., Dudkina E., Ulyanova V., Kayumov A., Barreto G. 2016. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochim. Biophys. Acta. 1863, 1559–1567. https://doi.org/10.1016/j.bbamcr.2016.04.005

Article  CAS  PubMed  Google Scholar 

Mitkevich V.A., Petrushanko I.Y., Spirin P.V., Fedorova T.V., Kretova O.V., Tchurikov N.A., Prassolov V.S., Ilinskaya O.N., Makarov A.A. 2011. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and AML1-ETO oncogenes. Cell Cycle. 10, 4090–4097. https://doi.org/10.4161/cc.10.23.18210

Article  CAS  PubMed  Google Scholar 

Mitkevich V.A., Orlova N.N., Petrushanko I.Y., Simonenko O.V., Spirin P.V., Prokofieva M.M., Gornostaeva A.S., Stocking C., Makarov A.A., Prasolov V.S. 2013. Expression of FLT3-ITD oncogene confers mice progenitor B-cells BAF3 sensitivity to the ribonuclease binase cytotoxic action. Mol. Biol. 47, 249–252. https://doi.org/10.1134/S002689331302009X

Article  CAS  Google Scholar 

Zur Hausen H. 2002. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer. 2, 342–350. https://doi.org/10.1038/Nrc798

Article  CAS  PubMed  Google Scholar 

Velu C.S., Niture S.K., Doneanu C.E., Pattabiraman N., Srivenugopal K.S. 2007. Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry. 46, 7765–7780. https://doi.org/10.1021/bi700425y

Article  CAS  PubMed  Google Scholar 

Petrushanko I.Y., Yakushev S., Mitkevich V.A., Kamanina Y.V., Ziganshin R.H., Meng X., Anash-kina A.A., Makhro A., Lopina O.D., Gassmann M., Makarov A.A., Bogdanova A. 2012. S-Glutathionylation of the Na, K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J. Biol. Chem. 287, 32195–32205. https://doi.org/10.1074/jbc.M112.391094

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alevizopoulos K., Calogeropoulou T., Lang F., Stournaras C. 2014. Na+/K+ ATPase inhibitors in cancer. Curr. Drug Targets. 15, 988–1000. https://doi.org/10.2174/1389450115666140908125025

Article  CAS  PubMed  Google Scholar 

Bejček J., Spiwok V., Kmoníčková E., Rimpelová S. 2021. Na+/K+-ATPase revisited: On its mechanism of action, role in cancer, and activity modulation. Molecules. 26, 1905. https://doi.org/10.3390/molecules26071905

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lushchak V.I. 2012. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids. 2012, 736837. https://doi.org/10.1155/2012/736837

Zou J., Shang X., Li C., Ouyang J., Li B., Liu X. 2019. Effects of cadmium on mineral metabolism and antioxidant enzyme activities in Salix matsudana Koidz. Pol. J. Environ. Stud. 28, 989–999. https://doi.org/10.15244/pjoes/81697

Article 

留言 (0)

沒有登入
gif