Green R.M., Graham M., O’Donovan M.R., Chipman J.K., Hodges N.J. 2006. Subcellular compartmentalization of glutathione: Correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis. 21, 383–390. https://doi.org/10.1093/mutage/gel043
Article CAS PubMed Google Scholar
Kennedy L., Sandhu J.K., Harper M.E., Cuperlovic-Culf M. 2020. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules. 10, 1429. https://doi.org/10.3390/biom10101429
Article CAS PubMed PubMed Central Google Scholar
Schafer F.Q., Buettner G.R. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol-. Med. 30, 1191–1212. https://doi.org/10.1016/s0891-5849(01)00480-4
Buettner G.R., Wagner B.A., Rodgers V.G. 2013. Quantitative redox biology: An approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem. Biophys. 67, 477–483. https://doi.org/10.1007/s12013-011-9320-3
Article CAS PubMed Google Scholar
Townsend D.M., Tew K.D., Tapiero H. 2003. The importance of glutathione in human disease. Biomed. Pharmacother. 57, 145–155. https://doi.org/10.1016/S0753-3322(03)00043-X
Article CAS PubMed PubMed Central Google Scholar
Vafa O., Wade M., Kern S., Beeche M., Pandita T.K., Hampton G.M., Wahl G.M. 2002. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: A mechanism for oncogene-induced genetic instability. Mol. Cell. 9, 1031–1044. https://doi.org/10.1016/S1097-2765(02)00520-8
Article CAS PubMed Google Scholar
Weinberg F., Hamanaka R., Wheaton W.W., Weinberg S., Joseph J., Lopez M., Kalyanaraman B., Mutlu G., Budinger S., Chandel N.S. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U. S. A. 107, 8788–8793. https://doi.org/10.1073/pnas.1003428107
Article PubMed PubMed Central Google Scholar
Ballatori N., Krance S.M., Marchan R., Hammond C.L. 2009. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol. Aspects Med. 30, 13–28. https://doi.org/10.1016/j.mam.2008.08.004
Article CAS PubMed Google Scholar
Mieyal J.J., Gallogly M.M., Qanungo S., Sabens E.A., Shelton M.D. 2008. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal. 10, 1941–1988. https://doi.org/10.1089/ars.2008.2089
Article CAS PubMed PubMed Central Google Scholar
Miller O.G., Mieyal J.J. 2015. Sulfhydryl-mediated redox signaling in inflammation: Role in neurodegenerative diseases. Arch. Toxicol. 89, 1439–1467. https://doi.org/10.1007/s00204-015-1496-7
Xue X., Wang B., Du W., Zhang C., Song Y., Cai Y., Cen D., Wang L., Xiong Y., Jiang P., Zhu S., Zhao K.N., Zhang L. 2016. Generation of affibody molecules specific for HPV16 E7 recognition. Oncota-rget. 7, 73995–74005. https://doi.org/10.18632/oncotarget.12174
Wondrak G.T. 2009. Redox-directed cancer therapeutics: Molecular mechanisms and opportunities. Antio-xid. Redox Signal. 11, 3013–3069. https://doi.org/10.1089/ars.2009.2541
Tew K.D., Townsend D.M. 2011. Redox platforms in cancer drug discovery and development. Curr. Opin. Chem. Biol. 15, 156–161. https://doi.org/10.1016/j.cbpa.2010.10.016
Mironova N.L., Petrushanko I.Y., Patutina O.A., Sen’kova A.V., Simonenko O.V., Mitkevich V.A., Markov O.V., Zenkova M.A., Makarov A.A. 2013. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells. Cell Cycle. 12, 2120–2131. https://doi.org/10.4161/cc.25164
Article CAS PubMed PubMed Central Google Scholar
Mitkevich V.A., Kretova O.V., Petrushanko I.Y., Burnysheva K.M., Sosin D.V., Simonenko O.V., Ilinskaya O.N., Tchurikov N.A., Makarov A.A. 2013. Ribonuclease binase apoptotic signature in leukemic Kasumi-1 cells. Biochimie. 95, 1344–1349. https://doi.org/10.1016/j.biochi.2013.02.016
Article CAS PubMed Google Scholar
Burnysheva K.M., Petrushanko I.Y., Spirin P.V., Prassolov V.S., Makarov A.A., Mitkevich V.A. 2016. Ribonuclease binase induces death in T-cell acute lymphoblastic leukemia cells by apoptosis. Mol. Biol. (Moscow). 50, 302–306. https://doi.org/10.1134/S0026893316020035
Shulga A.A., Okorokov A.L., Panov K.I., Kurbanov F.T., Chernov B.K., Skryabin K.G., Kirpichnikov M.P. 1994. Overexpression of Bacillus intermedius 7P ribonuclease (binase) in Escherichia coli. Mol. Biol. 28 (2), 303–310.
Mitkevich V.A., Burnysheva K.M., Petrushanko I.Y., Adzhubei A.A., Schulga A.A., Chumakov P.M., Makarov A.A. 2017. Binase treatment increases interferon sensitivity and apoptosis in SiHa cervical carcinoma cells by downregulating E6 and E7 human papilloma virus oncoproteins. Oncotarget. 8, 72666‒72675. https://doi.org/10.18632/oncotarget.20199
Article PubMed PubMed Central Google Scholar
Pal D., Rai A., Checker R., Patwardhan R.S., Singh B., Sharma D., Sandur S.K. 2021. Role of protein S-glutathionylation in cancer progression and development of resistance to anti-cancer drugs. Arch. Biochem. Biophys. 704, 108890. https://doi.org/10.1016/j.abb.2021.108890
Article CAS PubMed Google Scholar
Ilinskaya O.N., Singh I., Dudkina E., Ulyanova V., Kayumov A., Barreto G. 2016. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochim. Biophys. Acta. 1863, 1559–1567. https://doi.org/10.1016/j.bbamcr.2016.04.005
Article CAS PubMed Google Scholar
Mitkevich V.A., Petrushanko I.Y., Spirin P.V., Fedorova T.V., Kretova O.V., Tchurikov N.A., Prassolov V.S., Ilinskaya O.N., Makarov A.A. 2011. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and AML1-ETO oncogenes. Cell Cycle. 10, 4090–4097. https://doi.org/10.4161/cc.10.23.18210
Article CAS PubMed Google Scholar
Mitkevich V.A., Orlova N.N., Petrushanko I.Y., Simonenko O.V., Spirin P.V., Prokofieva M.M., Gornostaeva A.S., Stocking C., Makarov A.A., Prasolov V.S. 2013. Expression of FLT3-ITD oncogene confers mice progenitor B-cells BAF3 sensitivity to the ribonuclease binase cytotoxic action. Mol. Biol. 47, 249–252. https://doi.org/10.1134/S002689331302009X
Zur Hausen H. 2002. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer. 2, 342–350. https://doi.org/10.1038/Nrc798
Article CAS PubMed Google Scholar
Velu C.S., Niture S.K., Doneanu C.E., Pattabiraman N., Srivenugopal K.S. 2007. Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry. 46, 7765–7780. https://doi.org/10.1021/bi700425y
Article CAS PubMed Google Scholar
Petrushanko I.Y., Yakushev S., Mitkevich V.A., Kamanina Y.V., Ziganshin R.H., Meng X., Anash-kina A.A., Makhro A., Lopina O.D., Gassmann M., Makarov A.A., Bogdanova A. 2012. S-Glutathionylation of the Na, K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J. Biol. Chem. 287, 32195–32205. https://doi.org/10.1074/jbc.M112.391094
Article CAS PubMed PubMed Central Google Scholar
Alevizopoulos K., Calogeropoulou T., Lang F., Stournaras C. 2014. Na+/K+ ATPase inhibitors in cancer. Curr. Drug Targets. 15, 988–1000. https://doi.org/10.2174/1389450115666140908125025
Article CAS PubMed Google Scholar
Bejček J., Spiwok V., Kmoníčková E., Rimpelová S. 2021. Na+/K+-ATPase revisited: On its mechanism of action, role in cancer, and activity modulation. Molecules. 26, 1905. https://doi.org/10.3390/molecules26071905
Article CAS PubMed PubMed Central Google Scholar
Lushchak V.I. 2012. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids. 2012, 736837. https://doi.org/10.1155/2012/736837
Zou J., Shang X., Li C., Ouyang J., Li B., Liu X. 2019. Effects of cadmium on mineral metabolism and antioxidant enzyme activities in Salix matsudana Koidz. Pol. J. Environ. Stud. 28, 989–999. https://doi.org/10.15244/pjoes/81697
留言 (0)