Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32.
Article CAS PubMed PubMed Central Google Scholar
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, et al. Comprehensive survey on nanobiomaterials for bone tissue engineering applications. Nanomaterials. 2020;10:2019.
Article CAS PubMed PubMed Central Google Scholar
Kumar P, Dehiya BS, Sindhu A. Bioceramics for hard tissue engineering applications: a review. Int J Appl Eng Res. 2018;13:2744–52.
Kumar P, Kumar V, Kumar R, Kumar R, Pruncu CI. Fabrication and characterization of ZrO2 incorporated SiO2–CaO–P2O5 bioactive glass scaffolds. J Mech Behav Biomed Mater. 2020;109:103854.
Article CAS PubMed Google Scholar
Arner JW, Santrock RD. A historical review of common bone graft materials in foot and ankle surgery. Foot Ankle Spec. 2014;7:143–51.
Steijvers E, Ghei A, Xia Z. Manufacturing artificial bone allografts: a perspective. Biomater Transl. 2022;3:65–80.
PubMed PubMed Central Google Scholar
Kalsi S, Singh J, Sehgal SS, Sharma NK. Biomaterials for tissue engineered bone scaffolds: a review. Mater Today Proc. 2023;81:888–93.
Devillard CD, Marquette CA. Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel. Front Bioeng Biotechnol. 2021;9:721843.
Article PubMed PubMed Central Google Scholar
Singh S, Kumar M, Doolaanea AA, Mandal UK. A recent review on 3D-printing: scope and challenges with special focus on pharmaceutical field. Curr Pharm Des. 2022;28:2488–507.
Article CAS PubMed Google Scholar
Zhang Q, Zhou J, Zhi P, Liu L, Liu C, Fang A, et al. 3D printing method for bone tissue engineering scaffold. Med Nov Technol Devices. 2023;17:100205.
Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater. 2019;8:223–37.
Article CAS PubMed PubMed Central Google Scholar
Ren Y, Zhang C, Liu Y, Kong W, Yang X, Niu H, et al. Advances in 3D printing of highly bioadaptive bone tissue engineering scaffolds. ACS Biomater Sci Eng. 2023. https://doi.org/10.1021/acsbiomaterials.3c01129.
Singh S, Kumar M, Choudhary D, Chopra S, Bhatia A. 3D printing technology in drug delivery: polymer properties and applications. J Dispers Sci Technol. 2023;1–35. https://doi.org/10.1080/01932691.2023.2289623.
Ramezani Dana H, Ebrahimi F. Synthesis, properties, and applications of polylactic acid-based polymers. Polym Eng Sci. 2023;63:22–43.
Doolaanea A, Latif N, Singh S, Kumar M, Safa’at MF, Alfatama M, et al. A review on physicochemical properties of polymers used as filaments in 3D-printed tablets. AAPS PharmSciTech. 2023;24:1–28.
Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020;5:351–70.
Cui M, Chai Z, Lu Y, Zhu J, Chen J. Developments of polyurethane in biomedical applications: a review. Resour Chem Mater. 2023;2:262–76.
Miri Z, Farè S, Ma Q, Haugen HJ. Updates on polyurethane and its multifunctional applications in biomedical engineering. Prog Biomed Eng. 2023;5:42001.
Comuzzi L, Tumedei M, D’Arcangelo C, Piattelli A, Iezzi G. An in vitro analysis on polyurethane foam blocks of the insertion torque (IT) values, removal torque values (RTVs), and resonance frequency analysis (RFA) values in tapered and cylindrical implants. Int J Environ Res Public Health. 2021;18:9238.
Article CAS PubMed PubMed Central Google Scholar
Burke A, Hasirci N. Polyurethanes in biomedical applications. Biomater from mol to eng tissue. 2004;83–101. https://doi.org/10.1007/978-0-306-48584-8_7.
Maurya AK, de Souza FM, Gupta RK. Polyurethane and its composites: synthesis to application. Polyurethanes Prep Prop Appl Vol 1 Fundam. American Chemical Society; 2023. p. 1.
Das A, Mahanwar P. A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res. 2020;3:93–101.
de Souza FM, Kahol PK, Gupta RK. Introduction to polyurethane chemistry. Polyurethane Chem Renew Polyols Isocyanates. American Chemical Society; 2021. p. 1.
Kemona A, Piotrowska M. Polyurethane recycling and disposal: methods and prospects. Polymers (Basel). 2020;12:1752.
Article CAS PubMed Google Scholar
de Souza FM, Sulaiman MR, Gupta RK. Materials and chemistry of polyurethanes. Mater Chem Flame-Retardant Polyurethanes Vol 1 A Fundam Approach. American Chemical Society; 2021. p. 1.
Polyurethanes MSSE-SR in. Structure–property relations in polyurethanes. Szycher’s Handb Polyurethanes. CRC Press; 2012.
Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR. Polyurethane types, synthesis and applications – a review. RSC Adv. 2016;6:114453–82.
Li S, Liu Z, Hou L, Chen Y, Xu T. Effect of polyether/polyester polyol ratio on properties of waterborne two-component polyurethane coatings. Prog Org Coat. 2020;141:105545.
Petrović ZS, Ilavský M, Dušek K, Vidaković M, Javni I, Banjanin b. The effect of crosslinking on properties of polyurethane elastomers. J Appl Polym Sci. 1991;42:391–8.
Li X-L, Guo X-F, Song J-L, Sun G-Y. Research progress on hydrolytic stability of polyester polyurethane dispersions. J Phys Conf Ser. 2020;1635:12109.
Peyrton J, Avérous L. Structure-properties relationships of cellular materials from biobased polyurethane foams. Mater Sci Eng R Reports. 2021;145:100608.
Riehle N, Athanasopulu K, Kutuzova L, Götz T, Kandelbauer A, Tovar GEM, et al. Influence of hard segment content and diisocyanate structure on the transparency and mechanical properties of poly(dimethylsiloxane)-based urea elastomers for biomedical applications. Polymers (Basel). 2021;13:212.
Article CAS PubMed Google Scholar
Ristić I, Cakić S, Vukić N, Teofilović V, Tanasić J, Pilić B. The influence of soft segment structure on the properties of polyurethanes. Polymers (Basel). 2023;15:3755.
Article PubMed PubMed Central Google Scholar
GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking strategies for 3D bioprinting of polymeric hydrogels. Small. 2020;16:2002931.
Shi J, Zheng T, Zhang Y, Guo B, Xu J. Reprocessable cross-linked polyurethane with dynamic and tunable phenol–carbamate network. ACS Sustain Chem Eng. 2020;8:1207–18.
Chung Y-C, Kim JH, Park JE, Chun BC. Flexible crosslinking of polyurethane using grafted poly(dimethylsiloxane) with Epichlorohydrin and Bisphenol A end groups and its impact on the mechanical properties and low-temperature flexibility. J Elastomers Plast. 2021;54:555–73.
Müller SJ, Mirzahossein E, Iftekhar EN, Bächer C, Schrüfer S, Schubert DW, et al. Flow and hydrodynamic shear stress inside a printing needle during biofabrication. PLoS ONE. 2020;15:e0236371.
Article PubMed PubMed Central Google Scholar
Bercea M. Rheology as a tool for fine-tuning the properties of printable bioinspired gels. Molecules. 2023;28:2766.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Functional zwitterionic polyurethanes: state-of-the-art review. Macromol Rapid Commun. 2023;n/a:2300606.
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater. 2021;6:1083–106.
Allami T, Alamiery A, Nassir MH, Kadhum AH. Investigating physio-thermo-mechanical properties of polyurethane and thermoplastics nanocomposite in various applications. Polymers (Basel). 2021. https://doi.org/10.3390/polym13152467.
Takahara A, Okkema AZ, Cooper SL, Coury AJ. Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes. Biomaterials. 1991;12:324–34.
Article CAS PubMed Google Scholar
Szczepańczyk P, Szlachta M, Złocista-Szewczyk N, Chłopek J, Pielichowska K. Recent developments in polyurethane-based materials for bone tissue engineering. Polymers (Basel). 2021;13:946.
留言 (0)