A Comprehensive Exploration of Polymeric 3D Sponges for Regeneration of Bone

Ma C, Du T, Niu X, Fan Y (2022) Biomechanics and mechanobiology of the bone matrix. Bone Res 10(1). https://doi.org/10.1038/s41413-022-00223-y.

Wang B, Zhang Z, Pan H. Bone apatite nanocrystal: crystalline structure, chemical composition, and architecture. Biomimetics. 2023;8(1):90. https://doi.org/10.3390/biomimetics8010090.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou R, Guo Q, Xiao Y, Guo Q, Huang Y, Li C, Luo X (2021) Endocrine role of bone in the regulation of energy metabolism. Bone Res 9(1). https://doi.org/10.1038/s41413-021-00142-4.

Wilson-Barnes S, Lanham-New S, Lambert H. Modifiable risk factors for bone health & fragility fractures. Best Pract Res Clin Rheumatol. 2022;36(3):101758. https://doi.org/10.1016/j.berh.2022.101758.

Article  PubMed  Google Scholar 

Dec P, Modrzejewski A, Pawlik A. Existing and novel biomaterials for bone tissue engineering. Int J Mol Sci. 2022;24(1):529. https://doi.org/10.3390/ijms24010529.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Migliorini F, La Padula G, Torsiello E, Spiezia F, Oliva F, Maffulli N (2021) Strategies for large bone defect reconstruction after trauma, infections or tumor excision: a comprehensive review of the literature. Eur J Med Res 26(1). https://doi.org/10.1186/s40001-021-00593-9.

Tang G, Liu Z, Liu Y, Yu J, Wang X, Tan Z, Ye X (2021) Recent trends in the development of bone regenerative biomaterials. Front Cell Dev Biol 9. https://doi.org/10.3389/fcell.2021.665813.

Lavik E, Langer R (2004) Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 65(1). https://doi.org/10.1007/s00253-004-1580-z.

Peter X. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–98. https://doi.org/10.1016/j.addr.2007.08.041.

Article  CAS  Google Scholar 

Kim YS, Smoak MM, Melchiorri AJ, Mikos AG. An overview of the tissue engineering market in the United States from 2011 to 2018. Tissue Eng Part A. 2019;25(1–2):1–8. https://doi.org/10.1089/ten.tea.2018.0138.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Black C, Goriainov V, Gibbs D, Kanczler JM, Tare RS, Oreffo RO. Bone tissue engineering. Curr Mol Biol Rep. 2015;1(3):132–40. https://doi.org/10.1007/s40610-015-0022-2.

Article  PubMed  PubMed Central  Google Scholar 

Zenebe CG. A review on the role of wollastonite biomaterial in bone tissue engineering. Biomed Res Int. 2022;2022:1–15. https://doi.org/10.1155/2022/4996530.

Article  CAS  Google Scholar 

Ribeiro T, Flores M, Madureira S, Zanotto F, Monteiro FJ, Laranjeira MS. Magnetic Bone tissue engineering: reviewing the effects of magnetic stimulation on bone regeneration and angiogenesis. Pharmaceutics. 2023;15(4):1045. https://doi.org/10.3390/pharmaceutics15041045.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsiklin IL, Shabunin AV, Koncaнoв A, Bonoвa ЛT. In vivo bone tissue engineering strategies: advances and prospects. Polymers. 2022;14(15):3222. https://doi.org/10.3390/polym14153222.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue N, Ding X, Huang R, Jiang R, Huang H, Pan X, Wen M, Chen J, Duan J, Liu P, Wang Y. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals. 2022;15(7):879. https://doi.org/10.3390/ph15070879.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ressler A. Chitosan-based biomaterials for bone tissue engineering applications: a short review. Polymers. 2022;14(16):3430. https://doi.org/10.3390/polym14163430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and synthetic polymers for bone scaffolds optimization. Polymers. 2020;12(4):905. https://doi.org/10.3390/polym12040905.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhatia, S. (2016). Natural polymers vs synthetic polymer. In: Springer eBooks (pp. 95–118). https://doi.org/10.1007/978-3-319-41129-3_3.

Ahmed Z, Powell LC, Matin N, Mearns-Spragg A, Thornton CA, Khan I, Francis L. Jellyfish collagen: a biocompatible collagen source for 3D scaffold fabrication and enhanced chondrogenicity. Mar Drugs. 2021;19(8):405. https://doi.org/10.3390/md19080405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rico-Llanos GA, Borrego-Gonzalez S, Moncayo-Donoso M, Becerra J, Visser R. Collagen Type I biomaterials as scaffolds for bone tissue engineering. Polymers. 2021;13(4):599. https://doi.org/10.3390/polym13040599.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bian T, Xing HR. A collagen (Col)/nano-hydroxyapatite (nHA) biological composite bone scaffold with double multi-level interface reinforcement. Arab J Chem. 2022;15(5):103733. https://doi.org/10.1016/j.arabjc.2022.103733.

Article  CAS  Google Scholar 

Cunniffe GM, Dickson GR, Partap S, Stanton KT, O’Brien FJ. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. J Mater Sci Mater Med. 2009;21(8):2293–8. https://doi.org/10.1007/s10856-009-3964-1.

Article  CAS  PubMed  Google Scholar 

Rico-Llanos GA, Borrego-González S, Moncayo-Donoso M, Becerra J, Visser R. Collagen Type I biomaterials as scaffolds for bone tissue engineering. Polymers. 2021;13(4):599. https://doi.org/10.3390/polym13040599.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dutta PK, Rinki K, Dutta J (2011) Chitosan: a promising biomaterial for tissue engineering scaffolds. In: Advances in Polymer Science (pp. 45–79). https://doi.org/10.1007/12_2011_112.

Pandey A, Singh US, Momin M, Bhavsar C (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24(8). https://doi.org/10.1007/s10965-017-1286-4.

Farazin A, Ghasemi A. Design, synthesis, and fabrication of chitosan/hydroxyapatite composite scaffold for use as bone replacement tissue by Sol-Gel method. J Inorg Organomet Polym Mater. 2022;32(8):3067–82. https://doi.org/10.1007/s10904-022-02343-8.

Article  CAS  Google Scholar 

Ressler A, Kamboj N, Ledinski M, Rogina A, Urlić I, Hussainova I, Ivanković H, Ivanković M. Macroporous silicon-wollastonite scaffold with Sr/Se/Zn/Mg-substituted hydroxyapatite/chitosan hydrogel. Open Ceramics. 2022;12:100306. https://doi.org/10.1016/j.oceram.2022.100306.

Article  CAS  Google Scholar 

Fourie J, Du Preez L, Taute F, De Beer D. Chitosan composite biomaterials for bone tissue engineering—a review. Regen Eng Transl Med. 2020;8(1):1–21. https://doi.org/10.1007/s40883-020-00187-7.

Article  CAS  Google Scholar 

Julie Chandra CS, Sasi S, Bindu Sharmila TK (2023) Material applications of gelatin. In: Thomas S, Ar A, Jose Chirayil C, Thomas B (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-19-0710-4_28.

Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med. 2018;4(1):96–115. https://doi.org/10.1002/btm2.10124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naomi R, Bahari H, Ridzuan PM, Othman F. Natural-based biomaterial for skin wound healing (gelatin vs. collagen): expert review. Polymers. 2021;13(14):2319. https://doi.org/10.3390/polym13142319.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rashid TU, Sharmeen S, Biswas S, Ahmed T, Mallik AK, Shahruzzaman M, Sakib MN, Haque P, Rahman MM (2019) Gelatin-based hydrogels. In: Polymers and polymeric composites (pp. 1601–1641). https://doi.org/10.1007/978-3-319-77830-3_53.

Sun Q, Yu L, Zhang Z, Qian C, Fang H, Wang J, Wu P, Zhu X, Zhang J, Liu Z, He R (2022) A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications. Front Chem 10. https://doi.org/10.3389/fchem.2022.958420.

Lantigua D, Wu X, Suvarnapathaki S, Nguyen M, Camci-Unal G. Composite scaffolds from gelatin and bone meal powder for tissue engineering. Bioengineering. 2021;8(11):169. https://doi.org/10.3390/bioengineering8110169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sundaram MN, Deepthi S, Jayakumar R (2015) Chitosan-Gelatincompositescaffolds in bone tissue engineering. In Springer series on polymer and composite materials (pp. 99–121). https://doi.org/10.1007/978-81-322-2511-9_5.

Thitiset T, Damrongsakkul S, Yodmuang S, Leeanansaksiri W, Apinun J, Honsawek S (2021) A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering. Biomater Res 25(1). https://doi.org/10.1186/s40824-021-00220-y.

Koyyada A, Orsu P. Recent advancements and associated challenges of scaffold fabrication techniques in tissue engineering applications. Regen Eng Transl Med. 2020;7(2):147–59. https://doi.org/10.1007/s40883-020-00166-y.

Article 

留言 (0)

沒有登入
gif