Ma C, Du T, Niu X, Fan Y (2022) Biomechanics and mechanobiology of the bone matrix. Bone Res 10(1). https://doi.org/10.1038/s41413-022-00223-y.
Wang B, Zhang Z, Pan H. Bone apatite nanocrystal: crystalline structure, chemical composition, and architecture. Biomimetics. 2023;8(1):90. https://doi.org/10.3390/biomimetics8010090.
Article CAS PubMed PubMed Central Google Scholar
Zhou R, Guo Q, Xiao Y, Guo Q, Huang Y, Li C, Luo X (2021) Endocrine role of bone in the regulation of energy metabolism. Bone Res 9(1). https://doi.org/10.1038/s41413-021-00142-4.
Wilson-Barnes S, Lanham-New S, Lambert H. Modifiable risk factors for bone health & fragility fractures. Best Pract Res Clin Rheumatol. 2022;36(3):101758. https://doi.org/10.1016/j.berh.2022.101758.
Dec P, Modrzejewski A, Pawlik A. Existing and novel biomaterials for bone tissue engineering. Int J Mol Sci. 2022;24(1):529. https://doi.org/10.3390/ijms24010529.
Article CAS PubMed PubMed Central Google Scholar
Migliorini F, La Padula G, Torsiello E, Spiezia F, Oliva F, Maffulli N (2021) Strategies for large bone defect reconstruction after trauma, infections or tumor excision: a comprehensive review of the literature. Eur J Med Res 26(1). https://doi.org/10.1186/s40001-021-00593-9.
Tang G, Liu Z, Liu Y, Yu J, Wang X, Tan Z, Ye X (2021) Recent trends in the development of bone regenerative biomaterials. Front Cell Dev Biol 9. https://doi.org/10.3389/fcell.2021.665813.
Lavik E, Langer R (2004) Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 65(1). https://doi.org/10.1007/s00253-004-1580-z.
Peter X. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–98. https://doi.org/10.1016/j.addr.2007.08.041.
Kim YS, Smoak MM, Melchiorri AJ, Mikos AG. An overview of the tissue engineering market in the United States from 2011 to 2018. Tissue Eng Part A. 2019;25(1–2):1–8. https://doi.org/10.1089/ten.tea.2018.0138.
Article CAS PubMed PubMed Central Google Scholar
Black C, Goriainov V, Gibbs D, Kanczler JM, Tare RS, Oreffo RO. Bone tissue engineering. Curr Mol Biol Rep. 2015;1(3):132–40. https://doi.org/10.1007/s40610-015-0022-2.
Article PubMed PubMed Central Google Scholar
Zenebe CG. A review on the role of wollastonite biomaterial in bone tissue engineering. Biomed Res Int. 2022;2022:1–15. https://doi.org/10.1155/2022/4996530.
Ribeiro T, Flores M, Madureira S, Zanotto F, Monteiro FJ, Laranjeira MS. Magnetic Bone tissue engineering: reviewing the effects of magnetic stimulation on bone regeneration and angiogenesis. Pharmaceutics. 2023;15(4):1045. https://doi.org/10.3390/pharmaceutics15041045.
Article CAS PubMed PubMed Central Google Scholar
Tsiklin IL, Shabunin AV, Koncaнoв A, Bonoвa ЛT. In vivo bone tissue engineering strategies: advances and prospects. Polymers. 2022;14(15):3222. https://doi.org/10.3390/polym14153222.
Article CAS PubMed PubMed Central Google Scholar
Xue N, Ding X, Huang R, Jiang R, Huang H, Pan X, Wen M, Chen J, Duan J, Liu P, Wang Y. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals. 2022;15(7):879. https://doi.org/10.3390/ph15070879.
Article CAS PubMed PubMed Central Google Scholar
Ressler A. Chitosan-based biomaterials for bone tissue engineering applications: a short review. Polymers. 2022;14(16):3430. https://doi.org/10.3390/polym14163430.
Article CAS PubMed PubMed Central Google Scholar
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and synthetic polymers for bone scaffolds optimization. Polymers. 2020;12(4):905. https://doi.org/10.3390/polym12040905.
Article CAS PubMed PubMed Central Google Scholar
Bhatia, S. (2016). Natural polymers vs synthetic polymer. In: Springer eBooks (pp. 95–118). https://doi.org/10.1007/978-3-319-41129-3_3.
Ahmed Z, Powell LC, Matin N, Mearns-Spragg A, Thornton CA, Khan I, Francis L. Jellyfish collagen: a biocompatible collagen source for 3D scaffold fabrication and enhanced chondrogenicity. Mar Drugs. 2021;19(8):405. https://doi.org/10.3390/md19080405.
Article CAS PubMed PubMed Central Google Scholar
Rico-Llanos GA, Borrego-Gonzalez S, Moncayo-Donoso M, Becerra J, Visser R. Collagen Type I biomaterials as scaffolds for bone tissue engineering. Polymers. 2021;13(4):599. https://doi.org/10.3390/polym13040599.
Article CAS PubMed PubMed Central Google Scholar
Bian T, Xing HR. A collagen (Col)/nano-hydroxyapatite (nHA) biological composite bone scaffold with double multi-level interface reinforcement. Arab J Chem. 2022;15(5):103733. https://doi.org/10.1016/j.arabjc.2022.103733.
Cunniffe GM, Dickson GR, Partap S, Stanton KT, O’Brien FJ. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. J Mater Sci Mater Med. 2009;21(8):2293–8. https://doi.org/10.1007/s10856-009-3964-1.
Article CAS PubMed Google Scholar
Rico-Llanos GA, Borrego-González S, Moncayo-Donoso M, Becerra J, Visser R. Collagen Type I biomaterials as scaffolds for bone tissue engineering. Polymers. 2021;13(4):599. https://doi.org/10.3390/polym13040599.
Article CAS PubMed PubMed Central Google Scholar
Dutta PK, Rinki K, Dutta J (2011) Chitosan: a promising biomaterial for tissue engineering scaffolds. In: Advances in Polymer Science (pp. 45–79). https://doi.org/10.1007/12_2011_112.
Pandey A, Singh US, Momin M, Bhavsar C (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24(8). https://doi.org/10.1007/s10965-017-1286-4.
Farazin A, Ghasemi A. Design, synthesis, and fabrication of chitosan/hydroxyapatite composite scaffold for use as bone replacement tissue by Sol-Gel method. J Inorg Organomet Polym Mater. 2022;32(8):3067–82. https://doi.org/10.1007/s10904-022-02343-8.
Ressler A, Kamboj N, Ledinski M, Rogina A, Urlić I, Hussainova I, Ivanković H, Ivanković M. Macroporous silicon-wollastonite scaffold with Sr/Se/Zn/Mg-substituted hydroxyapatite/chitosan hydrogel. Open Ceramics. 2022;12:100306. https://doi.org/10.1016/j.oceram.2022.100306.
Fourie J, Du Preez L, Taute F, De Beer D. Chitosan composite biomaterials for bone tissue engineering—a review. Regen Eng Transl Med. 2020;8(1):1–21. https://doi.org/10.1007/s40883-020-00187-7.
Julie Chandra CS, Sasi S, Bindu Sharmila TK (2023) Material applications of gelatin. In: Thomas S, Ar A, Jose Chirayil C, Thomas B (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-19-0710-4_28.
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med. 2018;4(1):96–115. https://doi.org/10.1002/btm2.10124.
Article CAS PubMed PubMed Central Google Scholar
Naomi R, Bahari H, Ridzuan PM, Othman F. Natural-based biomaterial for skin wound healing (gelatin vs. collagen): expert review. Polymers. 2021;13(14):2319. https://doi.org/10.3390/polym13142319.
Article CAS PubMed PubMed Central Google Scholar
Rashid TU, Sharmeen S, Biswas S, Ahmed T, Mallik AK, Shahruzzaman M, Sakib MN, Haque P, Rahman MM (2019) Gelatin-based hydrogels. In: Polymers and polymeric composites (pp. 1601–1641). https://doi.org/10.1007/978-3-319-77830-3_53.
Sun Q, Yu L, Zhang Z, Qian C, Fang H, Wang J, Wu P, Zhu X, Zhang J, Liu Z, He R (2022) A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications. Front Chem 10. https://doi.org/10.3389/fchem.2022.958420.
Lantigua D, Wu X, Suvarnapathaki S, Nguyen M, Camci-Unal G. Composite scaffolds from gelatin and bone meal powder for tissue engineering. Bioengineering. 2021;8(11):169. https://doi.org/10.3390/bioengineering8110169.
Article CAS PubMed PubMed Central Google Scholar
Sundaram MN, Deepthi S, Jayakumar R (2015) Chitosan-Gelatincompositescaffolds in bone tissue engineering. In Springer series on polymer and composite materials (pp. 99–121). https://doi.org/10.1007/978-81-322-2511-9_5.
Thitiset T, Damrongsakkul S, Yodmuang S, Leeanansaksiri W, Apinun J, Honsawek S (2021) A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering. Biomater Res 25(1). https://doi.org/10.1186/s40824-021-00220-y.
Koyyada A, Orsu P. Recent advancements and associated challenges of scaffold fabrication techniques in tissue engineering applications. Regen Eng Transl Med. 2020;7(2):147–59. https://doi.org/10.1007/s40883-020-00166-y.
留言 (0)