Silk Fibroin–Based Biomaterial Scaffold in Tissue Engineering: Present Persuasive Perspective

Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. Mater Sci Eng C. 2018;89:456–69. https://doi.org/10.1016/j.msec.2018.04.062.

Article  CAS  Google Scholar 

Singh D, Harding AJ, Albadawi E, Boissonade FM, Haycock JW, Claeyssens F. Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomater. 2018;78:48–63. https://doi.org/10.1016/j.actbio.2018.07.055.

Article  PubMed  CAS  Google Scholar 

Cheng G, Davoudi Z, Xing X, Yu X, Cheng X, Li Z, Deng H, Wang Q. Advanced silk fibroin biomaterials for cartilage regeneration. ACS Biomater Sci Eng. 2018;4:2704–15. https://doi.org/10.1021/acsbiomaterials.8b00150.

Article  PubMed  CAS  Google Scholar 

Yodmuang S, McNamara SL, Nover AB, Mandal BB, Agarwal M, T-AN K, Chao P-HG, Hung C, Kaplan DL, Vunjak-Novakovic G. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015;11:27–36. https://doi.org/10.1016/j.actbio.2014.09.032.

Article  PubMed  CAS  Google Scholar 

Gui L, Niklason LE. Vascular tissue engineering: building perfusable vasculature for implantation. Curr Opin Chem Eng. 2014;3:68–74. https://doi.org/10.1016/j.coche.2013.11.004.

Article  PubMed  PubMed Central  Google Scholar 

O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95. https://doi.org/10.1016/S1369-7021(11)70058-X.

Article  CAS  Google Scholar 

Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213:66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dhar P, Fischer TM, Wang Y, Mallouk TE, Paxton WF, Sen A. Autonomously moving nanorods at a viscous interface. Nano Lett. 2006;6:66–72. https://doi.org/10.1021/nl052027s.

Article  PubMed  CAS  Google Scholar 

Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 2014;163:268–85. https://doi.org/10.1016/j.trsl.2013.11.003.

Article  PubMed  CAS  Google Scholar 

Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89:338–44. https://doi.org/10.1002/bip.20871.

Article  PubMed  CAS  Google Scholar 

Chen N, Jin W, Gao H, Hong J, Sun L, Yao J, Chen J, Chen S, Shao Z. Sequential intervention of anti-inflammatory and osteogenesis with silk fibroin coated polyethylene terephthalate artificial ligaments for anterior cruciate ligament reconstruction. J Mater Chem B. 2023;11(34):8281–90. https://doi.org/10.1039/d3tb00911d.

Article  PubMed  CAS  Google Scholar 

Koide A, Bailey CW, Huang X, Koide S. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol. 1998;284:1141–51. https://doi.org/10.1006/jmbi.1998.2238.

Article  PubMed  CAS  Google Scholar 

Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med. 2009;3:208–17. https://doi.org/10.1002/term.154.

Article  PubMed  CAS  Google Scholar 

Farrell E, O’Brien FJ, Doyle P, Fischer J, Yannas I, Harley BA, O’Connell B, Prendergast PJ, Campbell VA. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng. 2006;12:459–68. https://doi.org/10.1089/ten.2006.12.459.

Article  PubMed  CAS  Google Scholar 

Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26. https://doi.org/10.1016/j.progpolymsci.2011.06.003.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49:780–92. https://doi.org/10.1016/j.eurpolymj.2012.12.009.

Article  CAS  Google Scholar 

Hickey RJ, Pelling AE. Cellulose biomaterials for tissue engineering. Front Bioeng Biotechnol. 2019;7:45. https://doi.org/10.3389/fbioe.2019.00045.

Article  PubMed  PubMed Central  Google Scholar 

Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci. 2011;36:1254–76. https://doi.org/10.1016/j.progpolymsci.2011.05.003.

Article  CAS  Google Scholar 

Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98. https://doi.org/10.1016/j.progpolymsci.2007.05.017.

Article  CAS  Google Scholar 

Gagner JE, Kim W, Chaikof EL. Designing protein-based biomaterials for medical applications. Acta Biomater. 2014;10:1542–57. https://doi.org/10.1016/j.actbio.2013.10.001.

Article  PubMed  CAS  Google Scholar 

Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev. 2018;47:6486–504. https://doi.org/10.1039/C8CS00187A.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen F, Porter D, Vollrath F. Morphology and structure of silkworm cocoons. Mater Sci Eng C. 2012;32:772–8. https://doi.org/10.1016/j.msec.2012.01.023.

Article  CAS  Google Scholar 

Panilaitis B, Altman GH, Chen J, Jin H-J, Karageorgiou V, Kaplan DL. Macrophage responses to silk. Biomaterials. 2003;24:3079–85. https://doi.org/10.1016/S0142-9612(03)00158-3.

Article  PubMed  CAS  Google Scholar 

Zhang C, Zhang Y, Shao H, Hu X. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces. 2016;8:3349–58. https://doi.org/10.1021/acsami.5b11245.

Article  PubMed  CAS  Google Scholar 

Song W, Muthana M, Mukherjee J, Falconer RJ, Biggs CA, Zhao X. Magnetic-silk core–shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater Sci Eng. 2017;3:1027–38. https://doi.org/10.1021/acsbiomaterials.7b00153.

Article  PubMed  CAS  Google Scholar 

Li M, You J, Qin Q, Liu M, Yang Y, Jia K, Zhang Y, Zhou Y. A comprehensive review on silk fibroin as a persuasive biomaterial for bone tissue engineering. Int J Mol Sci. 2023;24(3):2660. https://doi.org/10.3390/ijms24032660.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sun W, Zhang Y, Gregory DA, Jimenez-Franco A, Tomeh MA, Lv S, Wang J, Haycock JW, Lu JR, Zhao X. Patterning the neuronal cells via inkjet printing of self-assembled peptides on silk scaffolds. Prog Nat Sci Mater Int. 2020;30:686–96. https://doi.org/10.1016/j.pnsc.2020.09.007.

Article  CAS  Google Scholar 

He P, Sahoo S, Ng KS, Chen K, Toh SL, Goh JCH. Enhanced osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. J Biomed Mater Res Part A. 2013;101:555–66. https://doi.org/10.1002/jbm.a.34333.

Article  CAS  Google Scholar 

Cai ZX, Mo XM, Zhang KH, Fan LP, Yin AL, He CL, Wang HS. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci. 2010;11:3529–39. https://doi.org/10.3390/ijms11093529.

Article 

留言 (0)

沒有登入
gif