Unravelling the Potential of Carboxymethyl Cellulose Hydrogels for Articular Cartilage Repair: A Rat Model Study

Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sport Heal A Multidiscip Approach. 2009;1:461–8. https://doi.org/10.1177/1941738109350438.

Article  Google Scholar 

Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77–95. https://doi.org/10.1093/bmb/ldn025.

Article  PubMed  Google Scholar 

Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil. 2002;10:432–63. https://doi.org/10.1053/joca.2002.0801.

Article  CAS  Google Scholar 

Liu Y, Shah KM, Luo J. Strategies for articular cartilage repair and regeneration. Front Bioeng Biotechnol. 2021;9:1–10. https://doi.org/10.3389/fbioe.2021.770655.

Article  Google Scholar 

Lee YHD, Suzer F, Thermann H. Autologous matrix-induced chondrogenesis in the knee: a review. Cartilage. 2014;5:145–53. https://doi.org/10.1177/1947603514529445.

Article  PubMed  PubMed Central  Google Scholar 

Yu X, Zhang H, Miao Y, Xiong S, Hu Y. Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment. J Leather Sci Eng. 2022;4:11. https://doi.org/10.1186/s42825-022-00085-4.

Article  CAS  Google Scholar 

Jiménez G, Venkateswaran S, López-Ruiz E, Perán M, Pernagallo S, Díaz-Monchón JJ, Canadas RF, Antich C, Oliveira JM, Callanan A, Walllace R, Reis RL, Montañez E, Carrillo E, Bradley M, Marchal JA. A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage. Acta Biomater. 2019;90:146–56. https://doi.org/10.1016/j.actbio.2019.03.040.

Article  CAS  PubMed  Google Scholar 

Liu Y, Tian K, Hao J, Yang T, Geng X, Zhang W. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2019;30:53. https://doi.org/10.1007/s10856-019-6257-3.

Article  CAS  PubMed  Google Scholar 

Wen Y-T, Dai N-T, Hsu S. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. Acta Biomater. 2019;88:301–13. https://doi.org/10.1016/j.actbio.2019.02.044.

Article  CAS  PubMed  Google Scholar 

Zhao M, Chen Z, Liu K, Wan Y, Li X, Luo X, Bai Y, Yang Z, Feng G. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes. J Zhejiang Univ B. 2015;16:914–23. https://doi.org/10.1631/jzus.B1500036.

Article  CAS  Google Scholar 

Koo Y, Choi E-J, Lee J, Kim H-J, Kim G, Do SH. 3D printed cell-laden collagen and hybrid scaffolds for in vivo articular cartilage tissue regeneration. J Ind Eng Chem. 2018;66:343–55. https://doi.org/10.1016/j.jiec.2018.05.049.

Article  CAS  Google Scholar 

Bhardwaj N, Singh YP, Devi D, Kandimalla R, Kotoky J, Mandal BB. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering. J Mater Chem B. 2016;4:3670–84. https://doi.org/10.1039/C6TB00717A.

Article  CAS  PubMed  Google Scholar 

Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6: e03719. https://doi.org/10.1016/j.heliyon.2020.e03719.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez-Téllez D, Téllez-Jurado L, Rodríguez-Lorenzo L. Hydrogels for cartilage regeneration, from polysaccharides to hybrids. Polymers (Basel). 2017;9:671. https://doi.org/10.3390/polym9120671.

Article  CAS  PubMed  Google Scholar 

Liu Y, Zhou G, Cao Y. Recent progress in cartilage tissue engineering—our experience and future directions. Engineering. 2017;3:28–35. https://doi.org/10.1016/J.ENG.2017.01.010.

Article  CAS  Google Scholar 

Balakrishnan B, Joshi N, Banerjee R. Borate aided Schiff’s base formation yields in situ gelling hydrogels for cartilage regeneration. J Mater Chem B. 2013;1:5564. https://doi.org/10.1039/c3tb21056a.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Lin S, Yan Y, You X, Ye H. Enhanced efficacy of transforming growth factor-β1 loaded an injectable cross-linked thiolated chitosan and carboxymethyl cellulose-based hydrogels for cartilage tissue engineering. J Biomater Sci Polym Ed. 2021;32:2402–22. https://doi.org/10.1080/09205063.2021.1971823.

Article  CAS  PubMed  Google Scholar 

Prasad AS, Wilson J, Thomas LV. Designer injectable matrices of photocrosslinkable carboxymethyl cellulose methacrylate based hydrogels as cell carriers for gel type autologous chondrocyte implantation (GACI). Int J Biol Macromol. 2023;224:465–82. https://doi.org/10.1016/j.ijbiomac.2022.10.137.

Article  CAS  PubMed  Google Scholar 

Namkaew J, Laowpanitchakorn P, Sawaddee N, Jirajessada S, Honsawek S, Yodmuang S. Carboxymethyl cellulose entrapped in a poly(vinyl) alcohol network: plant-based scaffolds for cartilage tissue engineering. Molecules. 2021;26:578. https://doi.org/10.3390/molecules26030578.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aswathy SH, NarendraKumar U, Manjubala I. The influence of molecular weight of cellulose on the properties of carboxylic acid crosslinked cellulose hydrogels for biomedical and environmental applications. Int J Biol Macromol. 2023;239: 124282. https://doi.org/10.1016/j.ijbiomac.2023.124282.

Article  CAS  PubMed  Google Scholar 

van den Borne MPJ, Raijmakers NJH, Vanlauwe J, Victor J, de Jong SN, Bellemans J, Saris DBF. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthr Cartil. 2007;15:1397–402. https://doi.org/10.1016/j.joca.2007.05.005.

Article  Google Scholar 

Kang H, Peng J, Lu S, Liu S, Zhang L, Huang J, Sui X, Zhao B, Wang A, Xu W, Luo Z, Guo Q. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med. 2014;8:442–53. https://doi.org/10.1002/term.1538.

Article  CAS  PubMed  Google Scholar 

Jiao W, Li X, Shan J, Wang X. Study of several alginate-based hydrogels for in vitro 3D cell cultures. Gels. 2022;8:147. https://doi.org/10.3390/gels8030147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Reports. 2015;3:617–20. https://doi.org/10.3892/br.2015.481.

Article  CAS  Google Scholar 

Medvedeva E, Grebenik E, Gornostaeva S, Telpuhov V, Lychagin A, Timashev P, Chagin A. Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci. 2018;19:2366. https://doi.org/10.3390/ijms19082366.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Modulevsky DJ, Cuerrier CM, Pelling AE. Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS ONE. 2016;11: e0157894. https://doi.org/10.1371/journal.pone.0157894.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Diaz S, Garcia-Giralt N, Lebourg M, Gómez-Tejedor J-A, Vila G, Caceres E, Benito P, MonleónPradas M, Nogues X, Gómez Ribelles JL, Monllau JC. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Am J Sports Med. 2010;38:509–19. https://doi.org/10.1177/0363546509352448.

Article  PubMed  Google Scholar 

Xu T, Yu X, Yang Q, Liu X, Fang J, Dai X. Autologous micro-fragmented adipose tissue as stem cell-based natural scaffold for cartilage defect repair. Cell Transplant. 2019;28:1709–20. https://doi.org/10.1177/0963689719880527.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif