Comprehensive Exploration on Chemical Functionalization and Crosslinked Injectable Hyaluronic Acid Hydrogels for Tissue Engineering Applications

Lu P, et al. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther. 2024;9(1):166. https://doi.org/10.1038/s41392-024-01852-x.

Article  PubMed  PubMed Central  Google Scholar 

Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol. 2024;270(Pt 2):132454. https://doi.org/10.1016/j.ijbiomac.2024.132454.

Article  PubMed  CAS  Google Scholar 

Miller D, Stegmann R. Use of Na-hyaluronate in anterior segment eye surgery. J Am Intraocul Implant Soc. 1980;6(1):13–5. https://doi.org/10.1016/S0146-2776(80)80097-8.

Article  PubMed  CAS  Google Scholar 

Binkhorst CD. Inflammatory and intraocular pressure after the use of Healon® in intraocular lens surgery. Am Intra-Ocular Implant Soc J. 1980;6(4):340–1. https://doi.org/10.1016/S0146-2776(80)80031-0.

Article  CAS  Google Scholar 

Yasin A, Ren Y, Li J, Sheng Y, Cao C, Zhang K. Advances in hyaluronic acid for biomedical applications. Front Bioeng Biotechnol. 2022;10:910290. https://doi.org/10.3389/fbioe.2022.910290.

Article  PubMed  PubMed Central  Google Scholar 

Dovedytis M, Liu ZJ, Bartlett S. Hyaluronic acid and its biomedical applications: a review. Eng Regen. 2020;1(November):102–13. https://doi.org/10.1016/j.engreg.2020.10.001.

Article  Google Scholar 

Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic acid in the third millennium. Polymers (Basel). 2018;10(7):701. https://doi.org/10.3390/polym10070701.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Overstreet DJ, Dutta D, Stabenfeldt SE, Vernon BL. Injectable hydrogels. J Polym Sci Part B Polym Phys. 2012;50(13):881–903. https://doi.org/10.1002/polb.23081.

Article  CAS  Google Scholar 

Wang L, et al. Fabrication of injectable, porous hyaluronic acid hydrogel based on an in-situ bubble-forming hydrogel entrapment process. Polymers (Basel). 2020;12(5):1138. https://doi.org/10.3390/POLYM12051138.

Article  PubMed  Google Scholar 

Borzacchiello A, Russo L, Malle BM, Schwach-Abdellaoui K, Ambrosio L. Hyaluronic acid based hydrogels for regenerative medicine applications. Biomed Res Int. 2015;1:871218. https://doi.org/10.1155/2015/871218.

Yan S, et al. Fabrication of injectable hydrogels based on poly(l-glutamic acid) and chitosan. RSC Adv. 2017;7(28):17005–19. https://doi.org/10.1039/c7ra01864a.

Article  CAS  Google Scholar 

Dessì M, Borzacchiello A, Mohamed THA, Abdel-Fattah WI, Ambrosio L. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res A. 2013;101(10):2984–93. https://doi.org/10.1002/jbm.a.34592.

Article  PubMed  CAS  Google Scholar 

Elvitigala KCML, Mubarok W, Sakai S. Tuning the crosslinking and degradation of hyaluronic acid/gelatin hydrogels using hydrogen peroxide for muscle cell sheet fabrication. Soft Matter. 2023;19(31):5880–7. https://doi.org/10.1039/D3SM00560G.

Article  PubMed  CAS  Google Scholar 

Jimenez-Vergara AC, Van Drunen R, Cagle T, Munoz-Pinto DJ. Modeling the effects of hyaluronic acid degradation on the regulation of human astrocyte phenotype using multicomponent interpenetrating polymer networks (mIPNs). Sci Rep. 2020;10(1):20734. https://doi.org/10.1038/s41598-020-77655-1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kulkarni N, et al. Emerging role of injectable dipeptide hydrogels in biomedical applications. ACS Omega. 2023;8(4):3551–70. https://doi.org/10.1021/acsomega.2c05601.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mashaqbeh H, Al-Ghzawi B, BaniAmer F. Exploring the formulation and approaches of injectable hydrogels utilizing hyaluronic acid in biomedical uses. Adv Pharmacol Pharm Sci. 2024;2024(1):3869387. https://doi.org/10.1155/2024/3869387.

Article  PubMed  PubMed Central  Google Scholar 

Yang X, et al. Hyaluronic acid-based injectable hydrogels for wound dressing and localized tumor therapy: a review. Adv NanoBiomed Res. 2022;2(12):2200124. https://doi.org/10.1002/anbr.202200124.

Article  CAS  Google Scholar 

Milne C, et al. Dual-modified hyaluronic acid for tunable double cross-linked hydrogel adhesives. Biomacromol. 2024;25(4):2645–55. https://doi.org/10.1021/acs.biomac.4c00194.

Article  CAS  Google Scholar 

Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym. 2011;85(3):469–89. https://doi.org/10.1016/j.carbpol.2011.03.019.

Article  CAS  Google Scholar 

Khunmanee S, Jeong Y, Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. 2017;8:2041731417726464. https://doi.org/10.1177/2041731417726464.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hintze V, Schnabelrauch M, Rother S. Chemical modification of hyaluronan and their biomedical applications. Front Chem. 2022;10(February):1–20. https://doi.org/10.3389/fchem.2022.830671.

Article  CAS  Google Scholar 

Wada T, Chirachanchai S, Izawa N, Inaki Y, Takemoto K. Synthesis and properties of hyaluronic acid conjugated nucleic acid analogs—1: synthesis of deacetylhyaluronan and introduction of nucleic acid bases. J Bioact Compat Polym. 1994;9(4):429–47. https://doi.org/10.1177/088391159400900405.

Article  CAS  Google Scholar 

Grieco M, Ursini O, Palamà IE, Gigli G, Moroni L, Cortese B. HYDRHA: hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering. Mater Today Bio. 2022;17:100453. https://doi.org/10.1016/j.mtbio.2022.100453.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dahl LB, Laurent TC, Smedsrød B. Preparation of biologically intact radioiodinated hyaluronan of high specific radioactivity: coupling of 125I-tyramine-cellobiose to amino groups after partial N-deacetylation. Anal Biochem. 1988;175(2):397–407. https://doi.org/10.1016/0003-2697(88)90563-5.

Article  PubMed  CAS  Google Scholar 

Zhang W, et al. A decrease in moisture absorption-retention capacity of N-deacetylation of hyaluronic acid. Glycoconj J. 2013;30(6):577–83. https://doi.org/10.1007/s10719-012-9457-3.

Article  PubMed  CAS  Google Scholar 

Chen F, Kakizaki I, Yamaguchi M, Kojima K, Takagaki K, Endo M. Novel products in hyaluronan digested by bovine testicular hyaluronidase. Glycoconj J. 2009;26(5):559–66. https://doi.org/10.1007/s10719-008-9200-2.

Article  PubMed  CAS  Google Scholar 

Chun-Ho K, Jong-Il K. Deacetylation hydrolase of hyaluronic acid, hyaluronic acid deacetylated by same and derivative thereof. WO 2011/155800 (15.12.2011 Gazette 2011/50). 2013 [Online]. Available: https://patents.google.com/patent/EP2581444A2/en. Accessed 22 Dec 2023.

Sedláček J, Hermannová M, Šatínský D, Velebný V. Current analytical methods for the characterization of N-deacetylated hyaluronan: a critical review. Carbohydr Polym. 2020;249:116720. https://doi.org/10.1016/j.carbpol.2020.116720.

Article  PubMed  CAS  Google Scholar 

Fidalgo J, Deglesne PA, Arroyo R, Sepúlveda L, Ranneva E, Deprez P. Detection of a new reaction by-product in BDDE cross-linked autoclaved hyaluronic acid hydrogels by LC–MS analysis. Med Devices Evid Res. 2018;11:367–76. https://doi.org/10.2147/MDER.S166999.

Article  CAS  Google Scholar 

Nejati S, Mongeau L. Injectable, pore-forming, self-healing, and adhesive hyaluronan hydrogels for soft tissue engineering applications. Sci Rep. 2023;13(1):14303. https://doi.org/10.1038/s41598-023-41468-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev. 2012;41(6):2193–22

留言 (0)

沒有登入
gif