Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87(5):381–5. https://doi.org/10.1097/PHM.0b013e31815e6370.
Hakim M, Kurniani N, Pinzon RT, Tugasworo D, Basuki M, Haddani H, et al. A review on prevalence and causes of peripheral neuropathy and treatment of different etiologic subgroups with neurotropic B vitamins. J Clin Exp Pharmacol. 2019;9:2161–1459. https://doi.org/10.35248/2161-1459.19.9.262.
Wilhelm JC, Xu M, Cucoranu D, Chmielewski S, Holmes T, Lau KS, et al. Cooperative roles of BDNF expression in neurons and Schwann cells are modulated by exercise to facilitate nerve regeneration. J Neurosci. 2012;32(14):5002–9. https://doi.org/10.1523/jneurosci.1411-11.2012.
Article CAS PubMed PubMed Central Google Scholar
Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014;2014:698256. https://doi.org/10.1155/2014/698256.
Article CAS PubMed PubMed Central Google Scholar
Rasappan K, Rajaratnam V, Wong YR. Conduit-based nerve repairs provide greater resistance to tension compared with primary repairs: a biomechanical analysis on large animal samples. Plast Reconstr Surg Glob Open. 2018;6(12):e1981. https://doi.org/10.1097/gox.0000000000001981.
Article PubMed PubMed Central Google Scholar
Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347. https://doi.org/10.1146/annurev.bioeng.5.011303.120731.
Article CAS PubMed Google Scholar
Kuihua Z, Chunyang W, Cunyi F, Xiumei M. Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J Biomed Mater Res A. 2014;102(8):2680–91. https://doi.org/10.1002/jbm.a.34922.
Article CAS PubMed Google Scholar
Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol. 2014;50(3):945–70. https://doi.org/10.1007/s12035-014-8706-9.
Article CAS PubMed Google Scholar
Tajdaran K, Gordon T, Wood MD, Shoichet MS, Borschel GH. An engineered biocompatible drug delivery system enhances nerve regeneration after delayed repair. J Biomed Mater Res Part A. 2016;104(2):367–76. https://doi.org/10.1002/jbm.a.35572.
Menorca RM, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin. 2013;29(3):317–30. https://doi.org/10.1016/j.hcl.2013.04.002.
Article PubMed PubMed Central Google Scholar
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal. 2011;14(10):2013–54. https://doi.org/10.1089/ars.2010.3208.
Article CAS PubMed PubMed Central Google Scholar
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. https://doi.org/10.1155/2017/8416763.
Article CAS PubMed PubMed Central Google Scholar
Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43(4):348–64. https://doi.org/10.1080/10715760902751902.
Article CAS PubMed Google Scholar
Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K, et al. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain. 2011;152(4):844–52. https://doi.org/10.1016/j.pain.2010.12.034.
Article CAS PubMed PubMed Central Google Scholar
Areti A, Yerra VG, Naidu V, Kumar A. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014;2:289–95. https://doi.org/10.1016/j.redox.2014.01.006.
Article CAS PubMed PubMed Central Google Scholar
Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594(13):3521–31. https://doi.org/10.1113/jp270874.
Article CAS PubMed PubMed Central Google Scholar
Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4(+)T cells in neurodegenerative diseases. Front Cell Neurosci. 2018;12:114. https://doi.org/10.3389/fncel.2018.00114.
Article CAS PubMed PubMed Central Google Scholar
Southam HM, Williamson MP, Chapman JA, Lyon RL, Trevitt CR, Henderson PJF, et al. ‘Carbon-monoxide-releasing molecule-2 (CORM-2)’ is a misnomer: ruthenium toxicity, not CO release, accounts for its antimicrobial effects. Antioxidants (Basel). 2021;10(6). https://doi.org/10.3390/antiox10060915.
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, et al. CO-releasing materials: an emphasis on therapeutic implications, as release and subsequent cytotoxicity are the part of therapy. Materials (Basel). 2019;12(10). https://doi.org/10.3390/ma12101643.
Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019;9(8):356.
Article CAS PubMed PubMed Central Google Scholar
Jia J, Xiao Y, Wang W, Qing L, Xu Y, Song H, et al. Differential mechanisms underlying neuroprotection of hydrogen sulfide donors against oxidative stress. Neurochem Int. 2013;62(8):1072–8. https://doi.org/10.1016/j.neuint.2013.04.001.
Article CAS PubMed PubMed Central Google Scholar
Gambari L, Grigolo B, Grassi F. Hydrogen sulfide in bone tissue regeneration and repair: state of the art and new perspectives. Int J Mol Sci. 2019;20(20). https://doi.org/10.3390/ijms20205231.
Wang M, Tang JJ, Wang LX, Yu J, Zhang L, Qiao C. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease. Neural Regen Res. 2021;16(7):1353–8. https://doi.org/10.4103/1673-5374.301026.
Article CAS PubMed Google Scholar
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, et al. The role of hydrogen sulfide in regulation of cell death following neurotrauma and related neurodegenerative and psychiatric diseases. Int J Mol Sci. 2023;24(13):10742.
Article CAS PubMed PubMed Central Google Scholar
Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830(8):4117–29. https://doi.org/10.1016/j.bbagen.2013.04.016.
Article CAS PubMed Google Scholar
Ezerina D, Takano Y, Hanaoka K, Urano Y, Dick TP. N-Acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem Biol. 2018;25(4):447-59 e4. https://doi.org/10.1016/j.chembiol.2018.01.011.
Article CAS PubMed PubMed Central Google Scholar
Pedre B, Barayeu U, Ezeriņa D, Dick TP. The mechanism of action of N-acetylcysteine (NAC): the emerging role of H(2)S and sulfane sulfur species. Pharmacol Ther. 2021;228:107916. https://doi.org/10.1016/j.pharmthera.2021.107916.
Article CAS PubMed Google Scholar
Pedre B, Dick TP. 3-Mercaptopyruvate sulfurtransferase: an enzyme at the crossroads of sulfane sulfur trafficking. Biol Chem. 2021;402(3):223–37. https://doi.org/10.1515/hsz-2020-0249.
Article CAS PubMed Google Scholar
Pandya JD, Readnower RD, Patel SP, Yonutas HM, Pauly JR, Goldstein GA, et al. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol. 2014;257:106–13. https://doi.org/10.1016/j.expneurol.2014.04.020.
Article CAS PubMed PubMed Central Google Scholar
Pizzorno J. Glutathione! Integr Med (Encinitas). 2014;13(1):8–12.
留言 (0)