Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60(11):2127–36.
Article PubMed PubMed Central Google Scholar
Nonnekes J, Goselink RJM, Růzicka E, Fasano A, Nutt JG, Bloem BR. Neurological disorders of gait, balance and posture: a sign-based approach. Nat Rev Neurol. 2018;14(3):183–9.
Stevens JA, Corso PS, Finkelstein EA, Miller TR. The costs of fatal and non-fatal falls among older adults. Inj Prev. 2006;12(5):290–5.
Article CAS PubMed PubMed Central Google Scholar
Macko RF, Ivey FM, Forrester LW. Task-oriented aerobic exercise in chronic hemiparetic stroke: training protocols and treatment effects. Top Stroke Rehabil. 2005;12(1):45–57.
Article CAS PubMed Google Scholar
Teixeira da Cunha Filho I, Lim PAC, Qureshy H, Henson H, Monga T, Protas EJ. A comparison of regular rehabilitation and regular rehabilitation with supported treadmill ambulation training for acute stroke patients. J Rehabil Res Dev. 2001;38(2):245–55.
Buurke TJW, Lamoth CJC, Van Der Woude LHV, Den Otter R. Handrail holding during treadmill walking reduces locomotor learning in able-bodied persons. IEEE Trans Neural Syst Rehabil Eng. 2019;27(9):1753–9.
Jeka JJ, Lackner JR. Fingertip contact influences human postural control. Experimental Brain Res Exp Brain Res. 1994;100(April):495–502.
Russo M, Lee J, Hogan N, Sternad D. Mechanical effects of canes on standing posture: beyond perceptual information. J Neuroeng Rehabil [Internet]. 2022;19(1):1–13. Available from: https://doi.org/10.1186/s12984-022-01067-7
Owings TM, Grabiner MD. Variability of step kinematics in young and older adults. Gait Posture. 2004;20(1):26–9.
Stephenson JL, Lamontagne A, De Serres SJ. The coordination of upper and lower limb movements during gait in healthy and stroke individuals. Gait Posture. 2009;29(1):11–6.
Chang MD, Shaikh S, Chau T. Effect of treadmill walking on the stride interval dynamics of human gait. Gait Posture. 2009;30(4):431–5.
Ijmker T, Lamoth CJ, Houdijk H, Tolsma M, Van Der Woude LHV, Daffertshofer A et al. Effects of handrail hold and light touch on energetics, step parameters, and neuromuscular activity during walking after stroke. J Neuroeng Rehabil [Internet]. 2015;12(1):1–12. Available from: https://doi.org/10.1186/s12984-015-0051-3
Kang KW, Lee NK, Son SM, Kwon JW, Kim K. Effect of handrail use while performing treadmill walking on the gait of stroke patients. J Phys Ther Sci. 2015;27(3):833–5.
Article PubMed PubMed Central Google Scholar
Bello O, Marquez G, Camblor M, Fernandez-Del-Olmo M. Mechanisms involved in treadmill walking improvements in Parkinson’s disease. Gait Posture [Internet]. 2010;32(1):118–23. Available from: https://doi.org/10.1016/j.gaitpost.2010.04.015
Kim HY, Kim EJ, You JH. Adaptive locomotor network activation during randomized walking speeds using functional near-infrared spectroscopy. Technol Heal Care. 2017;25(S1):S93–8.
Bakker M, De Lange FP, Helmich RC, Scheeringa R, Bloem BR, Toni I. Cerebral correlates of motor imagery of normal and precision gait. NeuroImage. 2008;41:998–1010.
Article CAS PubMed Google Scholar
Hamacher D, Herold F, Wiegel P, Hamacher D, Schega L. Brain activity during walking: A systematic review. Neurosci Biobehav Rev [Internet]. 2015;57:310–27. Available from: https://doi.org/10.1016/j.neubiorev.2015.08.002
la Fougère C, Zwergal A, Rominger A, Förster S, Fesl G, Dieterich M et al. Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison. Neuroimage [Internet]. 2010;50(4):1589–98. Available from: https://doi.org/10.1016/j.neuroimage.2009.12.060
Vitorio R, Stuart S, Rochester L, Alcock L, Pantall A. fNIRS response during walking — Artefact or cortical activity? A systematic review. Neurosci Biobehav Rev [Internet]. 2017;83(October):160–72. Available from: https://doi.org/10.1016/j.neubiorev.2017.10.002
Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. NeuroImage. 2001;14(5):1186–92.
Article CAS PubMed Google Scholar
Oh S, Song M, Kim J. Validating attentive locomotion training using interactive treadmill: an fNIRS study. J Neuroeng Rehabil. 2018;15(1):1–11.
Perrey S. Possibilities for examining the neural control of gait in humans with fNIRS. Front Physiol. 2014;5(MAYMay):10–3.
Clark DJ, Christou EA, Ring SA, Williamson JB, Doty L. Enhanced somatosensory feedback reduces prefrontal cortical activity during walking in older adults. Journals Gerontol - Ser Biol Sci Med Sci. 2014;69(11):1422–8.
Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, et al. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. NeuroImage. 2004;23(3):1020–6.
Schimpl M, Moore C, Lederer C, Neuhaus A, Sambrook J, Danesh J et al. Association between walking speed and age in healthy, free-living individuals using mobile accelerometry-a cross-sectional study. PLoS ONE. 2011;6(8).
Lo OY, Halko MA, Zhou J, Harrison R, Lipsitz LA, Manor B. Gait speed and gait variability are associated with different functional brain networks. Front Aging Neurosci. 2017;9(NOV).
Kim J, Lee J, Lee G, Chang WH, Ko MH, Yoo WK, et al. Relationship between lower limb muscle activity and cortical activation among elderly people during walking: effects of fast speed and cognitive dual task. Front Aging Neurosci. 2023;14(January):1–14.
Mathôt S, Schreij D, Theeuwes J, OpenSesame. An open-source, graphical experiment builder for the social sciences. 44, Behav Res Methods. 2012.
Peirce JW. PsychoPy-Psychophysics software in Python. J Neurosci Methods. 2007;162:1–2.
Kothe C. Lab streaming layer (LSL). https://githubcom/sccn/labstreaminglayer Accessed Oct. 2014;26.
Brigadoi S, Cooper RJ. How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy. Neurophotonics. 2015;2(2):025005.
Article PubMed PubMed Central Google Scholar
Huppert TJ, Diamond SG, Franceschini MA, Boas DA. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt. 2009;48(10).
Selb J, Yücel MA, Phillip D, Schytz HW, Iversen HK, Vangel M, et al. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data: a study in healthy subjects and stroke patients. J Biomed Opt. 2015;20(5):056011.
Article PubMed PubMed Central Google Scholar
Cooper RJ, Selb J, Gagnon L, Phillip D, Schytz HW, Iversen HK, et al. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front Neurosci. 2012;6(OCT):1–10.
Iester C, Bonzano L, Biggio M, Cutini S, Bove M, Brigadoi S. Comparing different motion correction approaches for resting-state functional connectivity analysis with functional near-infrared spectroscopy data. Neurophotonics. 2024 Oct;11(4):045001. https://doi.org/10.1117/1.NPh.11.4.045001. Epub 2024 Oct 3. PMID: 39372120; PMCID: PMC11448702.
Di Lorenzo R, Pirazzoli L, Blasi A, Bulgarelli C, Hakuno Y, Minagawa Y, et al. Recommendations for motion correction of infant fNIRS data applicable to multiple data sets and acquisition systems. NeuroImage. 2019;200:511–27.
Brigadoi S, Ceccherini L, Cutini S, Scarpa F, Scatturin P, Selb J, et al. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. NeuroImage. 2014;85:181–91.
Yücel MA, Selb J, Cooper RJ, Boas DA, TARGETED PRINCIPLE COMPONENT ANALYSIS:. A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY. J Innov Opt Health Sci. 2014;7(2).
Scholkmann F, Spichtig S, Muehlemann T, Wolf M. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol Meas. 2010;31(5):649–62.
Article CAS PubMed Google Scholar
Molavi B, Dumont GA. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol Meas [Internet]. 2012;33(2):259–70. Available from: https://iopscience.iop.org/article/https://doi.org/10.1088/0967-3334/33/2/259
Scholkmann F, Wolf M. General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J Biomed Opt [Internet]. 2013;18(10):105004. Available from: https://doi.org/10.1117/1.JBO.18.10.105004
Delpy DT, Cope M, Zee P, van der, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol [Internet]. 1988;33(12):1433–42. Available from: https://doi.org/10.1088/0031-9155/33/12/008
Barker JW, Aarabi A, Huppert TJ. Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS. Biomed Opt Express [Internet]. 2013;4(8):1366–79. Available from: https://opg.optica.org/boe/abstract.cfm?URI=boe-4-8-1366
Bonzano L, Biggio M, Brigadoi S, Pedullà L, Pagliai M, Iester C et al. Don’t plan, just do it: cognitive and sensorimotor contributions to manual dexterity. NeuroImage. 2023;280(August).
Di Rosa E, Brigadoi S, Cutini S, Tarantino V, Dell'Acqua R, Mapelli D, Braver TS, Vallesi A. Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. Neuroimage. 2019 Nov 15;202:116062. https://doi.org/10.1016/j.neuroimage.2019.116062. Epub 2019 Jul 29. PMID: 31369810; PMCID: PMC7467146.
Diamond SG, Huppert TJ, Kolehmainen V, Franceschini MA, Kaipio JP, Arridge SR, et al. Dynamic physiological modeling for functional diffuse optical tomography. NeuroImage. 2006;30(1):88–101.
Zimeo Morais GA, Balardin JB, Sato JR. FNIRS Optodes’ Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Sci Rep. 2018;8(1):1–11.
Iester C, Biggio M, Cutini S, Brigadoi S, Papaxanthis C, Brichetto G et al. Time-of-day influences resting-state functional cortical connectivity. Front Neurosci. 2023;17(May).
Fisher RA. On the probable error of a coefficient of correlation deduced from a small sample. Volume 9. Biometrika. Metron; 1921. pp. 3–32.
Kleinbaum DG, Kupper LL, Muller KE. Applied regression analysis and other multivariable methods. 2nd ed. Duxbury series in statistics and decision sciences TA - TT -. Boston SE - XVIII, 718 p.; 25 cm.: PWS-Kent; 1988.
De Jong BM, Leenders KL, Paans AMJ. Right parieto-premotor activation related to limb-independent antiphase movement. Cereb Cortex. 2002;12(11).
Dobkin BH, Firestine A, West M, Saremi K, Woods R. Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. NeuroImage. 2004;23(1).
Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S. Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? NeuroImage. 2007;37(4).
Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S. Role of the prefrontal cortex in human balance control. NeuroImage. 2008;43(2).
Harada T, Miyai I, Suzuki M, Kubota K. Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp Brain Res. 2009;193(3).
Ptak R. The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. Vol. 18, Neuroscientist. 2012.
Kurz MJ, Wilson TW, Arpin DJ. Stride-time variability and sensorimotor cortical activation during walking. NeuroImage. 2012;59(2).
Maidan I, Nieuwhof F, Bernad-Elazari H, Reelick MF, Bloem BR, Giladi N et al. The role of the Frontal lobe in Complex walking among patients with Parkinson’s Disease and healthy older adults: an fNIRS Study. Neurorehabil Neural Repair. 2016;30(10).
Bootsma JM, Caljouw SR, Veldman MP, Maurits NM, Rothwell JC, Hortobágyi T. Failure to Engage Neural Plasticity through Practice of a High-difficulty Task is Accompanied by Reduced Motor Skill Retention in Older Adults. Neuroscience [Internet]. 2020;451:22–35. Available from:
留言 (0)