Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.
Louie DR, Simpson LA, Mortenson WB, Field TS, Yao J, Eng JJ. Prevalence of walking limitation after acute stroke and its impact on discharge to home. Phys Ther. 2022;102(1):pzab246.
Rameezan BA, Zaliha O. Functional status of acute stroke patients in University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. Med J Malaysia. 2005;60(5):548–59.
Hornby TG, Straube DS, Kinnaird CR, Holleran CL, Echauz AJ, Rodriguez KS, et al. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. Top Stroke Rehabil. 2011;18(4):293–307.
Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: Narrative review. PM R. 2018;10(9 Suppl 2):S174–88.
Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil. 2016;13(1):53.
Article PubMed PubMed Central Google Scholar
Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2020;10: CD006185.
Molteni F, Guanziroli E, Goffredo M, Calabrò RS, Pournajaf S, Gaffuri M, et al. Gait recovery with an overground powered exoskeleton: A randomized controlled trial on subacute stroke subjects. Brain Sci. 2021;11(1):104.
Article PubMed PubMed Central Google Scholar
Louie DR, Mortenson WB, Durocher M, Schneeberg A, Teasell R, Yao J, et al. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: A randomized controlled trial. J Neuroeng Rehabil. 2021;18(1):149.
Article PubMed PubMed Central Google Scholar
Rojek A, Mika A, Oleksy Ł, Stolarczyk A, Kielnar R. Effects of exoskeleton gait training on balance, load distribution, and functional status in stroke: A randomized controlled trial. Front Neurol. 2019;10:1344.
De Luca R, Maresca G, Balletta T, Cannavò A, Leonardi S, Latella D, et al. Does overground robotic gait training improve non-motor outcomes in patients with chronic stroke? Findings from a pilot study. J Clin Neurosci. 2020;81:240–5.
Calabrò RS, Naro A, Russo M, Bramanti P, Carioti L, Balletta T, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial. J Neuroeng Rehabil. 2018;15(1):35.
Article PubMed PubMed Central Google Scholar
Hsu TH, Tsai CL, Chi JY, Hsu CY, Lin YN. Effect of wearable exoskeleton on post-stroke gait: A systematic review and meta-analysis. Ann Phys Rehabil Med. 2023;66(1): 101674.
Leow XRG, Ng SLA, Lau Y. Overground robotic exoskeleton training for patients with stroke on walking-related outcomes: a systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2023;104(10):1698–710.
Labruyere R. Robot-assisted gait training: more randomized controlled trials are needed! Or maybe not? J Neuroeng Rehabil. 2022;19(1):58.
Article PubMed PubMed Central Google Scholar
van Hedel HJA, Severini G, Scarton A, O’Brien A, Reed T, Gaebler-Spira D, et al. Advanced Robotic Therapy Integrated Centers (ARTIC): an international collaboration facilitating the application of rehabilitation technologies. J Neuroeng Rehabil. 2018;15(1):30.
Article PubMed PubMed Central Google Scholar
Swank C, Trammell M, Bennett M, Ochoa C, Callender L, Sikka S, et al. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings. Int J Rehabil Res. 2020;43(3):206–13.
Gillespie J, Arnold D, Trammell M, Bennett M, Ochoa C, Driver S, et al. Utilization of overground exoskeleton gait training during inpatient rehabilitation: a descriptive analysis. J Neuroeng Rehabil. 2023;20(1):102.
Article PubMed PubMed Central Google Scholar
Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984;64(1):35–40.
Article CAS PubMed Google Scholar
Kressler J, Thomas CK, Field-Fote EC, Sanchez J, Widerström-Noga E, Cilien DC, et al. Understanding therapeutic benefits of overground bionic ambulation: exploratory case series in persons with chronic, complete spinal cord injury. Arch Phys Med Rehabil. 2014;95(10):1878-87.e4.
Collen FM, Wade DT, Robb GF, Bradshaw CM. The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment. Int Disabil Stud. 1991;13(2):50–4.
Article CAS PubMed Google Scholar
Seaby L, Torrance G. Reliability of a physiotherapy functional assessment used in a rehabilitation setting. Physiother Can. 1989;41:264–71.
Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil. 1987;1:6–18.
Hettle R CM, Hinde S, Hodgson R, Jones-Diette J, Woolacott N, et al. The assessment and appraisal of regenerative medicines and cell therapy products: an exploration of methods for review, economic evaluation and appraisal. Southampton (UK): NIHR Journals Library; 2017 Feb. (Health Technology Assessment, No. 21.7.) Appendix 2, Adjustment for bias in non-randomised studies. Available from: https://www.ncbi.nlm.nih.gov/books/NBK424728/.
Beninato M, Gill-Body KM, Salles S, Stark PC, Black-Schaffer RM, Stein J. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch Phys Med Rehabil. 2006;87(1):32–9.
Ford I, Norrie J. Pragmatic trials. N Engl J Med. 2016;375(5):454–63.
Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27.
Article CAS PubMed Google Scholar
Morone G, Bragoni M, Iosa M, De Angelis D, Venturiero V, Coiro P, et al. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair. 2011;25(7):636–44.
Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549–55.
Article PubMed PubMed Central Google Scholar
Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, De Leon RD. Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. J Neurotrauma. 2007;24(6):1000–12.
Moucheboeuf G, Griffier R, Gasq D, Glize B, Bouyer L, Dehail P, et al. Effects of robotic gait training after stroke: A meta-analysis. Ann Phys Rehabil Med. 2020;63(6):518–34.
Collen FM, Wade DT, Bradshaw CM. Mobility after stroke: reliability of measures of impairment and disability. Int Disabil Stud. 1990;12(1):6–9.
Article CAS PubMed Google Scholar
Inouye M, Hashimoto H, Mio T, Sumino K. Influence of admission functional status on functional change after stroke rehabilitation. Am J Phys Med Rehabil. 2001;80(2):121–5.
Article CAS PubMed Google Scholar
Tay MRJ, Lim CJ, Chua KSG. Functional and ambulatory benefits of robotic-assisted gait training during early subacute inpatient rehabilitation following severe stroke. Singapore Med J. 2021. https://doi.org/10.11622/smedj.2021219.
留言 (0)