Overground robotic exoskeleton vs conventional therapy in inpatient stroke rehabilitation: results from a pragmatic, multicentre implementation programme

Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.

Article  PubMed  Google Scholar 

Louie DR, Simpson LA, Mortenson WB, Field TS, Yao J, Eng JJ. Prevalence of walking limitation after acute stroke and its impact on discharge to home. Phys Ther. 2022;102(1):pzab246.

Article  PubMed  Google Scholar 

Rameezan BA, Zaliha O. Functional status of acute stroke patients in University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. Med J Malaysia. 2005;60(5):548–59.

CAS  PubMed  Google Scholar 

Hornby TG, Straube DS, Kinnaird CR, Holleran CL, Echauz AJ, Rodriguez KS, et al. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. Top Stroke Rehabil. 2011;18(4):293–307.

Article  PubMed  Google Scholar 

Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: Narrative review. PM R. 2018;10(9 Suppl 2):S174–88.

PubMed  Google Scholar 

Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil. 2016;13(1):53.

Article  PubMed  PubMed Central  Google Scholar 

Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2020;10: CD006185.

PubMed  Google Scholar 

Molteni F, Guanziroli E, Goffredo M, Calabrò RS, Pournajaf S, Gaffuri M, et al. Gait recovery with an overground powered exoskeleton: A randomized controlled trial on subacute stroke subjects. Brain Sci. 2021;11(1):104.

Article  PubMed  PubMed Central  Google Scholar 

Louie DR, Mortenson WB, Durocher M, Schneeberg A, Teasell R, Yao J, et al. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: A randomized controlled trial. J Neuroeng Rehabil. 2021;18(1):149.

Article  PubMed  PubMed Central  Google Scholar 

Rojek A, Mika A, Oleksy Ł, Stolarczyk A, Kielnar R. Effects of exoskeleton gait training on balance, load distribution, and functional status in stroke: A randomized controlled trial. Front Neurol. 2019;10:1344.

Article  PubMed  Google Scholar 

De Luca R, Maresca G, Balletta T, Cannavò A, Leonardi S, Latella D, et al. Does overground robotic gait training improve non-motor outcomes in patients with chronic stroke? Findings from a pilot study. J Clin Neurosci. 2020;81:240–5.

Article  PubMed  Google Scholar 

Calabrò RS, Naro A, Russo M, Bramanti P, Carioti L, Balletta T, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial. J Neuroeng Rehabil. 2018;15(1):35.

Article  PubMed  PubMed Central  Google Scholar 

Hsu TH, Tsai CL, Chi JY, Hsu CY, Lin YN. Effect of wearable exoskeleton on post-stroke gait: A systematic review and meta-analysis. Ann Phys Rehabil Med. 2023;66(1): 101674.

Article  PubMed  Google Scholar 

Leow XRG, Ng SLA, Lau Y. Overground robotic exoskeleton training for patients with stroke on walking-related outcomes: a systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2023;104(10):1698–710.

Article  PubMed  Google Scholar 

Labruyere R. Robot-assisted gait training: more randomized controlled trials are needed! Or maybe not? J Neuroeng Rehabil. 2022;19(1):58.

Article  PubMed  PubMed Central  Google Scholar 

van Hedel HJA, Severini G, Scarton A, O’Brien A, Reed T, Gaebler-Spira D, et al. Advanced Robotic Therapy Integrated Centers (ARTIC): an international collaboration facilitating the application of rehabilitation technologies. J Neuroeng Rehabil. 2018;15(1):30.

Article  PubMed  PubMed Central  Google Scholar 

Swank C, Trammell M, Bennett M, Ochoa C, Callender L, Sikka S, et al. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings. Int J Rehabil Res. 2020;43(3):206–13.

Article  PubMed  Google Scholar 

Gillespie J, Arnold D, Trammell M, Bennett M, Ochoa C, Driver S, et al. Utilization of overground exoskeleton gait training during inpatient rehabilitation: a descriptive analysis. J Neuroeng Rehabil. 2023;20(1):102.

Article  PubMed  PubMed Central  Google Scholar 

Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984;64(1):35–40.

Article  CAS  PubMed  Google Scholar 

Kressler J, Thomas CK, Field-Fote EC, Sanchez J, Widerström-Noga E, Cilien DC, et al. Understanding therapeutic benefits of overground bionic ambulation: exploratory case series in persons with chronic, complete spinal cord injury. Arch Phys Med Rehabil. 2014;95(10):1878-87.e4.

Article  PubMed  Google Scholar 

Collen FM, Wade DT, Robb GF, Bradshaw CM. The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment. Int Disabil Stud. 1991;13(2):50–4.

Article  CAS  PubMed  Google Scholar 

Seaby L, Torrance G. Reliability of a physiotherapy functional assessment used in a rehabilitation setting. Physiother Can. 1989;41:264–71.

Google Scholar 

Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil. 1987;1:6–18.

CAS  PubMed  Google Scholar 

Hettle R CM, Hinde S, Hodgson R, Jones-Diette J, Woolacott N, et al. The assessment and appraisal of regenerative medicines and cell therapy products: an exploration of methods for review, economic evaluation and appraisal. Southampton (UK): NIHR Journals Library; 2017 Feb. (Health Technology Assessment, No. 21.7.) Appendix 2, Adjustment for bias in non-randomised studies. Available from: https://www.ncbi.nlm.nih.gov/books/NBK424728/.

Beninato M, Gill-Body KM, Salles S, Stark PC, Black-Schaffer RM, Stein J. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch Phys Med Rehabil. 2006;87(1):32–9.

Article  PubMed  Google Scholar 

Ford I, Norrie J. Pragmatic trials. N Engl J Med. 2016;375(5):454–63.

Article  PubMed  Google Scholar 

Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27.

Article  CAS  PubMed  Google Scholar 

Morone G, Bragoni M, Iosa M, De Angelis D, Venturiero V, Coiro P, et al. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair. 2011;25(7):636–44.

Article  PubMed  Google Scholar 

Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549–55.

Article  PubMed  PubMed Central  Google Scholar 

Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, De Leon RD. Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. J Neurotrauma. 2007;24(6):1000–12.

Article  PubMed  Google Scholar 

Moucheboeuf G, Griffier R, Gasq D, Glize B, Bouyer L, Dehail P, et al. Effects of robotic gait training after stroke: A meta-analysis. Ann Phys Rehabil Med. 2020;63(6):518–34.

Article  PubMed  Google Scholar 

Collen FM, Wade DT, Bradshaw CM. Mobility after stroke: reliability of measures of impairment and disability. Int Disabil Stud. 1990;12(1):6–9.

Article  CAS  PubMed  Google Scholar 

Inouye M, Hashimoto H, Mio T, Sumino K. Influence of admission functional status on functional change after stroke rehabilitation. Am J Phys Med Rehabil. 2001;80(2):121–5.

Article  CAS  PubMed  Google Scholar 

Tay MRJ, Lim CJ, Chua KSG. Functional and ambulatory benefits of robotic-assisted gait training during early subacute inpatient rehabilitation following severe stroke. Singapore Med J. 2021. https://doi.org/10.11622/smedj.2021219.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif