A Piezoelectric–Electromagnetic Low-Frequency Wave Energy Harvester Based on L-Shaped Beam and Upconversion Mechanism

B. Saoud, I. Shayea, M.H. Azmi, and A.A. El-Saleh, New scheme of WSN routing to ensure data communication between sensor nodes based on energy warning. Alex. Eng. J. 80, 397–407 (2023).

Article  Google Scholar 

V. Bogdan, A.C. Jose-Francisco, L. Elie, and B. Alexis, Dynamic analysis of a novel two-sided nonlinear MEMS electrostatic energy harvester. Mech. Syst. Signal Process. 206, 110932 (2024).

Article  Google Scholar 

Z. Xue et al., A detection probability guaranteed energy-efficient scheduling mechanism in large-scale WSN. Alex. Eng. J. 71, 451–462 (2023).

Article  Google Scholar 

S. Roy, M.H. Kabir, M. Salauddin, and M.A. Halim, An electromagnetic wind energy harvester based on rotational magnet pole-pairs for autonomous IoT applications. Energies 15(15), 5725 (2022).

Article  CAS  Google Scholar 

A.M. Tairab, H. Wang, D. Hao, A. Azam, A. Ahmed, and Z. Zhang, A hybrid multimodal energy harvester for self-powered wireless sensors in the railway. Energy Sustain. Dev. 68, 150–169 (2022).

Article  Google Scholar 

F. Wang, M. Zhou, P. Wu, L. Gao, X. Chen, and X. Mu, Self-powered transformer intelligent wireless temperature monitoring system based on an ultra-low acceleration piezoelectric vibration energy harvester. Nano Energy 114, 108662 (2023).

Article  CAS  Google Scholar 

H. Lixia et al., A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 16, 6244–54 (2022).

Article  Google Scholar 

S. Gao et al., Self-powered system by a suspension structure-based triboelectric-electromagnetic-piezoelectric hybrid generator for unifying wind energy and vibration harvesting with vibration attenuation function. Nano Energy 122, 109323 (2024).

Article  CAS  Google Scholar 

T. Zhao, M. Xu, X. Xiao, Y. Ma, Z. Li, and Z.L. Wang, Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 88, 106199 (2021).

Article  CAS  Google Scholar 

F. Juan et al., Thermodynamic performance of solar full-spectrum electricity generation system integrating photovoltaic cell with thermally-regenerative ammonia battery. Appl. Energy 332, 120517 (2023).

Article  Google Scholar 

F.M. Al-Fadhli et al., Optimizing cogeneration and desalination plants by incorporating solar energy. Desalination 549, 116320 (2023).

Article  CAS  Google Scholar 

S.P. Neill, Wave resource characterization and co-location with offshore wind in the Irish Sea. Renew. Energy 222, 119902 (2024).

Article  Google Scholar 

M. Hafizh, A.G. Muthalif, J. Renno, M.R. Paurobally, and M.S. Ali, A vortex-induced vibration-based self-tunable airfoil-shaped piezoelectric energy harvester for remote sensing applications in water. Ocean Eng. 269, 113467 (2023).

Article  Google Scholar 

A. Aref, S. Hyungmin, H. Sajjad, K.E. Soo, L. Inwon, and K.K. Chun, Design of vibro-impact electromagnetic ocean-wave energy harvesting system; an experimental study. Ocean Eng. 263, 112168 (2022).

Article  Google Scholar 

S. Dai et al., Experimental study of high performance mercury-based triboelectric nanogenerator for low-frequency wave energy harvesting. Nano Energy 115, 108728 (2023).

Article  CAS  Google Scholar 

J. Hyunjun et al., Self-powered ocean buoy using a disk-type triboelectric nanogenerator with a mechanical frequency regulator. Nano Energy 121, 109216 (2024).

Article  Google Scholar 

X. Wang, T. Wang, H. Lv, H. Wang, and F. Zeng, Analytical modeling and experimental verification of a multi-DOF spherical pendulum electromagnetic energy harvester. Energy 286, 129428 (2024).

Article  Google Scholar 

G. Shi et al., A floating piezoelectric electromagnetic hybrid wave vibration energy harvester actuated by a rotating wobble ball. Energy 270, 126808 (2023).

Article  Google Scholar 

X. Ma and S. Zhou, A review of flow-induced vibration energy harvesters. Energy Convers. Manag. 254, 115223 (2022).

Article  Google Scholar 

R. Liu, H. Wang, L. Sun, X. Li, and L. He, A lever-type piezoelectric wave energy harvester based on magnetic coupling and inertial vibration. Sustain. Energy Technol. Assess. 62, 103605 (2024).

Google Scholar 

L. Linhai et al., Omnidirectional hybrid wave energy harvester for self-powered sensors in sea-crossing bridges. Ocean Eng 287, 115829 (2023).

Article  Google Scholar 

L. Hu, W. Tao, and Z. Shiqiang, Design, modeling and experiments of a novel biaxial-pendulum vibration energy harvester. Energy 254, 124431 (2022).

Article  Google Scholar 

L. Haisheng, S. Haixia, S. Baoyong, Z. Dong, S. Xinchun, and L. Donghuan, Nonlinear dynamic response of an L-shaped beam-mass piezoelectric energy harvester. J. Sound Vib. 499, 124431 (2021).

Google Scholar 

X. Xie, Z. Wang, D. Liu, G. Du, and J. Zhang, An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency. Energy 212, 118752 (2020).

Article  Google Scholar 

Y.Y. Cao, J.H. Yang, and D.B. Yang, Dynamically synergistic transition mechanism and modified nonlinear magnetic force modeling for multistable rotation energy harvester. Mech. Syst. Signal Process. 189, 110085 (2023).

Article  Google Scholar 

M. Yuming et al., A tactile sensor based on piezoresistive effect and electromagnetic induction. Sens. Actuators A Phys. 344, 113716 (2022).

Article  Google Scholar 

Q. Liu, J. Cao, F. Hu, D. Li, X. Jing, and Z. Hou, Parameter identification of nonlinear bistable piezoelectric structures by two-stage subspace method. Nonlinear Dyn. 105(3), 1–16 (2021).

Article  CAS  Google Scholar 

W. Cai, V. Roussinova, and V. Stoilov, Piezoelectric wave energy harvester. Renew. Energy 196, 973–982 (2022).

Article  Google Scholar 

B. Feng et al., Design, modeling and experiments of swing L-shape piezoelectric beam applied to tidal and wave energy harvesting. Ocean Eng. 289, 116193 (2023).

Article  Google Scholar 

留言 (0)

沒有登入
gif