S. Saqib et al., Synthesis, Characterization and Use of Iron Oxide Nano Particles for Antibacterial Activity. Microsc. Res. Tech. 82(4), 415 (2019). https://doi.org/10.1002/jemt.23182.
Article CAS PubMed Google Scholar
A. Ali et al., Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 9, 49 (2016). https://doi.org/10.2147/NSA.S99986.
Article CAS PubMed PubMed Central Google Scholar
T. Amrillah, C.A.C. Abdullah, D.P. Sari, Z. Mumtazah, F.P. Adila, and F. Astuti, Crafting a Next-Generation Device Using Iron Oxide Thin Film: a Review. Cryst. Growth Des. 21(12), 7326 (2021). https://doi.org/10.1021/acs.cgd.1c00841.
W. Wu, C.Z. Jiang, and V.A.L. Roy, Designed Synthesis and Surface Engineering Strategies of Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Nanoscale 8(47), 19421 (2016). https://doi.org/10.1039/c6nr07542h.
Article CAS PubMed Google Scholar
W. Wu, C. Jiang, and V.A.L. Roy, Recent Progress in Magnetic Iron Oxide-Semiconductor Composite Nanomaterials as Promising Photocatalysts. Nanoscale 7(1), 38 (2015). https://doi.org/10.1039/c4nr04244a.
Article CAS PubMed Google Scholar
M. Ameri et al., Ab initio Calculations of Structural, Elastic, and Thermodynamic Properties of HoX (X=N, O, S and Se). Mater. Sci. Semicond. Process. 26(1), 205 (2014). https://doi.org/10.1016/j.mssp.2014.03.042.
J.D. Brown et al., P-f Hybridization in the Ferromagnetic Semiconductor HoN. Appl. Phys. Lett. 100(7), 1 (2012). https://doi.org/10.1063/1.3687176.
T. Fujii, M. Takano, R. Kakano, Y. Isozumi, and Y. Bando, Spin-Flip Anomalies in Epitaxial α-Fe2O3 Films by Mössbauer spectroscopy. J. Magn. Magn. Mater. 135(2), 231 (1994). https://doi.org/10.1016/0304-8853(94)90351-4.
M. Gich et al., Magnetoelectric Coupling in ε-Fe2O3 Nanoparticles. Nanotechnology 17(3), 687 (2006). https://doi.org/10.1088/0957-4484/17/3/012.
X.H. Liu, A.D. Rata, C.F. Chang, A.C. Komarek, and L.H. Tjeng, Verwey Transition in FE3O4THIN FILMs: Influence of Oxygen Stoichiometry and Substrate-Induced Microstructure. Phys Rev B Condens Matter Mater. Phys. 90, 1 (2014).
M. Alexe et al., Ferroelectric Switching in Multiferroic Magnetite (Fe3O 4) Thin Films. Adv. Mater. 21(44), 4452 (2009). https://doi.org/10.1002/adma.200901381.
J. Cao, T. Kako, N. Kikugawa, and J. Ye, Photoanodic Properties of Pulsed-Laser-Deposited α-Fe2O3 Electrode. J. Phys. D Appl. Phys. 43(32), 325101 (2010). https://doi.org/10.1088/0022-3727/43/32/325101.
H. Mansour et al., Structural, Optical, Magnetic and Electrical Properties Of Hematite (α-Fe2O3) Nanoparticles Synthesized by Two Methods: Polyol and Precipitation. Appl. Phys. A Mater. Sci. Process. 123(12), 1 (2017). https://doi.org/10.1007/s00339-017-1408-1.
M.F. Al-Kuhaili, M. Saleem, and S.M.A. Durrani, Optical Properties of Iron Oxide (α-Fe2O3) Thin Films Deposited by the Reactive Evaporation of Iron. J. Alloys Compd. 521, 178 (2012). https://doi.org/10.1016/j.jallcom.2012.01.115.
Z. Hubička et al., Deposition of Hematite Fe2O3 Thin Film by DC Pulsed Magnetron and DC Pulsed Hollow Cathode Sputtering System. Thin Solid Films 549, 184 (2013). https://doi.org/10.1016/j.tsf.2013.09.031.
A.A. Yadav, Preparation and Electrochemical Properties of Spray Deposited α-Fe2O3 from Nonaqueous Medium for Supercapacitor Applications. J. Mater. Sci. Mater. Electron. 27(12), 12876 (2016). https://doi.org/10.1007/s10854-016-5423-3.
D. Peeters et al., Nanostructured Fe2O3 Processing via Water-Assisted ALD and Low-Temperature CVD from a Versatile Iron Ketoiminate Precursor. Adv. Mater. Interfaces 4(18), 1 (2017). https://doi.org/10.1002/admi.201700155.
B. Sharma and A. Sharma, Enhanced Surface Dynamics and Magnetic Switching of α-Fe2O3 Films Prepared by Laser Assisted Chemical Vapor Deposition. Appl. Surf. Sci. 567, 150724 (2021). https://doi.org/10.1016/j.apsusc.2021.150724.
E.T. Lee, B.J. Kim, and G.E. Jang, Characterization of α-Fe2O3 Thin Films Processed by Plasma Enhanced Chemical Vapor Deposition (PECVD). Thin Solid Films 341(1–2), 73 (1999). https://doi.org/10.1016/S0040-6090(98)01530-2.
H.G. Cha et al., Preparation and Characterization of α-Fe2O3 Nanorod-Thin Film by Metal–Organic Chemical Vapor Deposition. Thin Solid Films 517(5), 1853 (2009). https://doi.org/10.1016/J.TSF.2008.10.023.
J.R. Avila, D.W. Kim, M. Rimoldi, O.K. Farha, and J.T. Hupp, Fabrication of Thin Films of α-Fe2O3 via Atomic Layer Deposition Using Iron Bisamidinate and Water under Mild Growth Conditions. ACS Appl. Mater. Interfaces 7(30), 16138 (2015). https://doi.org/10.1021/acsami.5b04043.
Article CAS PubMed Google Scholar
L. Liu, Efficient Water Oxidation Using α-Fe2O3 Thin Films Conformally Coated on Vertically Aligned Titania Nanotube Arrays by Atomic Layer Deposition. Mater. Lett. 159, 284 (2015). https://doi.org/10.1016/J.MATLET.2015.07.010.
S.I. Yi, Y. Liang, S. Thevuthasan, and S.A. Chambers, Morphological and Structural Investigation of the Early Stages of Epitaxial Growth of α-Fe2O3 (0001) on α-Al2O3 (0001) by Oxygen-Plasma-Assisted MBE. Surf. Sci. 443(3), 212 (1999). https://doi.org/10.1016/S0039-6028(99)00992-9.
S. Gota, E. Guiot, M. Henriot, and M. Gautier-Soyer, Atomic-Oxygen-Assisted MBE Growth of α−Fe2O3 on α−Al2O3 (0001): Metastable FeO(111)-Like Phase at Subnanometer Thicknesses. Phys. Rev. B 60(20), 14387 (1999). https://doi.org/10.1103/physrevb.60.14387.
I.J. Lee et al., Morphological and Structural Characterization of Epitaxial α-Fe2O3 (0001) Deposited on Al2O3 (0001) by Dc Sputter Deposition. J Vac Sci Technol A Vacuum Surf Film. 23(5), 1450 (2005). https://doi.org/10.1116/1.2013321.
L. Jia, K. Harbauer, P. Bogdanoff, K. Ellmer, and S. Fiechter, Sputtering Deposition of Ultra-thin α-Fe2O3 Films for Solar Water Splitting. J. Mater. Sci. Technol. 31(6), 655 (2015). https://doi.org/10.1016/j.jmst.2014.10.007.
Y. Ma, X. you Xie, H. yu Chen, T. hua Zhang, and T.T. Debela, The Growth Mode of α-Fe2O3 Thin Films by DC Magnetron Sputtering. Vacuum 194, 110625 (2021). https://doi.org/10.1016/J.VACUUM.2021.110625.
J.E. Heo, T. Choi, S.H. Chang, J.H. Jeong, B.C. Choi, and J.W. Jang, Structural and Optical Properties of Epitaxial Iron Oxide Thin Films Deposited by Pulsed Laser Deposition. J. Korean Phys. Soc. 76(6), 512 (2020). https://doi.org/10.3938/jkps.76.512.
M. Seki, H. Yamahara, and H. Tabata, Enhanced Photocurrent in Rh-Substituted α-Fe2O3 Thin Films Grown by Pulsed Laser Deposition. Appl. Phys. Express 5(11), 3 (2012). https://doi.org/10.1143/APEX.5.115801.
R. Ben Ayed, M. Ajili, and N.K. Turki, Physical Properties and Rietveld Analysis of Fe2O3 Thin Films Prepared by Spray Pyrolysis: Effect of Precursor Concentration. Phys. B Condens. Matter 563, 30 (2019). https://doi.org/10.1016/j.physb.2019.03.029.
A. Grine, F. Zehani, B. Khennaoui, F. Bouremmad, and H. Zaioune, Effect of Precursor Concentration and Annealing Temperature on the Structural, Optical and Electrical Properties of Pure α-Fe2O3 Thin Films Elaborated by the Spin-Coating Method. Mater. Chem. Phys. 276, 125367 (2022). https://doi.org/10.1016/J.MATCHEMPHYS.2021.125367.
留言 (0)