Effect of Solvent on the Structural and Morphological Properties of α-Fe2O3 Deposited at Different Temperatures Using Aerosol-assisted CVD in an In-house Built Setup

S. Saqib et al., Synthesis, Characterization and Use of Iron Oxide Nano Particles for Antibacterial Activity. Microsc. Res. Tech. 82(4), 415 (2019). https://doi.org/10.1002/jemt.23182.

Article  CAS  PubMed  Google Scholar 

A. Ali et al., Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 9, 49 (2016). https://doi.org/10.2147/NSA.S99986.

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. Amrillah, C.A.C. Abdullah, D.P. Sari, Z. Mumtazah, F.P. Adila, and F. Astuti, Crafting a Next-Generation Device Using Iron Oxide Thin Film: a Review. Cryst. Growth Des. 21(12), 7326 (2021). https://doi.org/10.1021/acs.cgd.1c00841.

Article  CAS  Google Scholar 

W. Wu, C.Z. Jiang, and V.A.L. Roy, Designed Synthesis and Surface Engineering Strategies of Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Nanoscale 8(47), 19421 (2016). https://doi.org/10.1039/c6nr07542h.

Article  CAS  PubMed  Google Scholar 

W. Wu, C. Jiang, and V.A.L. Roy, Recent Progress in Magnetic Iron Oxide-Semiconductor Composite Nanomaterials as Promising Photocatalysts. Nanoscale 7(1), 38 (2015). https://doi.org/10.1039/c4nr04244a.

Article  CAS  PubMed  Google Scholar 

M. Ameri et al., Ab initio Calculations of Structural, Elastic, and Thermodynamic Properties of HoX (X=N, O, S and Se). Mater. Sci. Semicond. Process. 26(1), 205 (2014). https://doi.org/10.1016/j.mssp.2014.03.042.

Article  CAS  Google Scholar 

J.D. Brown et al., P-f Hybridization in the Ferromagnetic Semiconductor HoN. Appl. Phys. Lett. 100(7), 1 (2012). https://doi.org/10.1063/1.3687176.

Article  CAS  Google Scholar 

T. Fujii, M. Takano, R. Kakano, Y. Isozumi, and Y. Bando, Spin-Flip Anomalies in Epitaxial α-Fe2O3 Films by Mössbauer spectroscopy. J. Magn. Magn. Mater. 135(2), 231 (1994). https://doi.org/10.1016/0304-8853(94)90351-4.

Article  CAS  Google Scholar 

M. Gich et al., Magnetoelectric Coupling in ε-Fe2O3 Nanoparticles. Nanotechnology 17(3), 687 (2006). https://doi.org/10.1088/0957-4484/17/3/012.

Article  CAS  Google Scholar 

X.H. Liu, A.D. Rata, C.F. Chang, A.C. Komarek, and L.H. Tjeng, Verwey Transition in FE3O4THIN FILMs: Influence of Oxygen Stoichiometry and Substrate-Induced Microstructure. Phys Rev B Condens Matter Mater. Phys. 90, 1 (2014).

Article  CAS  Google Scholar 

M. Alexe et al., Ferroelectric Switching in Multiferroic Magnetite (Fe3O 4) Thin Films. Adv. Mater. 21(44), 4452 (2009). https://doi.org/10.1002/adma.200901381.

Article  CAS  Google Scholar 

J. Cao, T. Kako, N. Kikugawa, and J. Ye, Photoanodic Properties of Pulsed-Laser-Deposited α-Fe2O3 Electrode. J. Phys. D Appl. Phys. 43(32), 325101 (2010). https://doi.org/10.1088/0022-3727/43/32/325101.

Article  CAS  Google Scholar 

H. Mansour et al., Structural, Optical, Magnetic and Electrical Properties Of Hematite (α-Fe2O3) Nanoparticles Synthesized by Two Methods: Polyol and Precipitation. Appl. Phys. A Mater. Sci. Process. 123(12), 1 (2017). https://doi.org/10.1007/s00339-017-1408-1.

Article  CAS  Google Scholar 

M.F. Al-Kuhaili, M. Saleem, and S.M.A. Durrani, Optical Properties of Iron Oxide (α-Fe2O3) Thin Films Deposited by the Reactive Evaporation of Iron. J. Alloys Compd. 521, 178 (2012). https://doi.org/10.1016/j.jallcom.2012.01.115.

Article  CAS  Google Scholar 

Z. Hubička et al., Deposition of Hematite Fe2O3 Thin Film by DC Pulsed Magnetron and DC Pulsed Hollow Cathode Sputtering System. Thin Solid Films 549, 184 (2013). https://doi.org/10.1016/j.tsf.2013.09.031.

Article  CAS  Google Scholar 

A.A. Yadav, Preparation and Electrochemical Properties of Spray Deposited α-Fe2O3 from Nonaqueous Medium for Supercapacitor Applications. J. Mater. Sci. Mater. Electron. 27(12), 12876 (2016). https://doi.org/10.1007/s10854-016-5423-3.

Article  CAS  Google Scholar 

D. Peeters et al., Nanostructured Fe2O3 Processing via Water-Assisted ALD and Low-Temperature CVD from a Versatile Iron Ketoiminate Precursor. Adv. Mater. Interfaces 4(18), 1 (2017). https://doi.org/10.1002/admi.201700155.

Article  CAS  Google Scholar 

B. Sharma and A. Sharma, Enhanced Surface Dynamics and Magnetic Switching of α-Fe2O3 Films Prepared by Laser Assisted Chemical Vapor Deposition. Appl. Surf. Sci. 567, 150724 (2021). https://doi.org/10.1016/j.apsusc.2021.150724.

Article  CAS  Google Scholar 

E.T. Lee, B.J. Kim, and G.E. Jang, Characterization of α-Fe2O3 Thin Films Processed by Plasma Enhanced Chemical Vapor Deposition (PECVD). Thin Solid Films 341(1–2), 73 (1999). https://doi.org/10.1016/S0040-6090(98)01530-2.

Article  CAS  Google Scholar 

H.G. Cha et al., Preparation and Characterization of α-Fe2O3 Nanorod-Thin Film by Metal–Organic Chemical Vapor Deposition. Thin Solid Films 517(5), 1853 (2009). https://doi.org/10.1016/J.TSF.2008.10.023.

Article  CAS  Google Scholar 

J.R. Avila, D.W. Kim, M. Rimoldi, O.K. Farha, and J.T. Hupp, Fabrication of Thin Films of α-Fe2O3 via Atomic Layer Deposition Using Iron Bisamidinate and Water under Mild Growth Conditions. ACS Appl. Mater. Interfaces 7(30), 16138 (2015). https://doi.org/10.1021/acsami.5b04043.

Article  CAS  PubMed  Google Scholar 

L. Liu, Efficient Water Oxidation Using α-Fe2O3 Thin Films Conformally Coated on Vertically Aligned Titania Nanotube Arrays by Atomic Layer Deposition. Mater. Lett. 159, 284 (2015). https://doi.org/10.1016/J.MATLET.2015.07.010.

Article  CAS  Google Scholar 

S.I. Yi, Y. Liang, S. Thevuthasan, and S.A. Chambers, Morphological and Structural Investigation of the Early Stages of Epitaxial Growth of α-Fe2O3 (0001) on α-Al2O3 (0001) by Oxygen-Plasma-Assisted MBE. Surf. Sci. 443(3), 212 (1999). https://doi.org/10.1016/S0039-6028(99)00992-9.

Article  CAS  Google Scholar 

S. Gota, E. Guiot, M. Henriot, and M. Gautier-Soyer, Atomic-Oxygen-Assisted MBE Growth of α−Fe2O3 on α−Al2O3 (0001): Metastable FeO(111)-Like Phase at Subnanometer Thicknesses. Phys. Rev. B 60(20), 14387 (1999). https://doi.org/10.1103/physrevb.60.14387.

Article  CAS  Google Scholar 

I.J. Lee et al., Morphological and Structural Characterization of Epitaxial α-Fe2O3 (0001) Deposited on Al2O3 (0001) by Dc Sputter Deposition. J Vac Sci Technol A Vacuum Surf Film. 23(5), 1450 (2005). https://doi.org/10.1116/1.2013321.

Article  CAS  Google Scholar 

L. Jia, K. Harbauer, P. Bogdanoff, K. Ellmer, and S. Fiechter, Sputtering Deposition of Ultra-thin α-Fe2O3 Films for Solar Water Splitting. J. Mater. Sci. Technol. 31(6), 655 (2015). https://doi.org/10.1016/j.jmst.2014.10.007.

Article  CAS  Google Scholar 

Y. Ma, X. you Xie, H. yu Chen, T. hua Zhang, and T.T. Debela, The Growth Mode of α-Fe2O3 Thin Films by DC Magnetron Sputtering. Vacuum 194, 110625 (2021). https://doi.org/10.1016/J.VACUUM.2021.110625.

Article  CAS  Google Scholar 

J.E. Heo, T. Choi, S.H. Chang, J.H. Jeong, B.C. Choi, and J.W. Jang, Structural and Optical Properties of Epitaxial Iron Oxide Thin Films Deposited by Pulsed Laser Deposition. J. Korean Phys. Soc. 76(6), 512 (2020). https://doi.org/10.3938/jkps.76.512.

Article  CAS  Google Scholar 

M. Seki, H. Yamahara, and H. Tabata, Enhanced Photocurrent in Rh-Substituted α-Fe2O3 Thin Films Grown by Pulsed Laser Deposition. Appl. Phys. Express 5(11), 3 (2012). https://doi.org/10.1143/APEX.5.115801.

Article  CAS  Google Scholar 

R. Ben Ayed, M. Ajili, and N.K. Turki, Physical Properties and Rietveld Analysis of Fe2O3 Thin Films Prepared by Spray Pyrolysis: Effect of Precursor Concentration. Phys. B Condens. Matter 563, 30 (2019). https://doi.org/10.1016/j.physb.2019.03.029.

Article  CAS  Google Scholar 

A. Grine, F. Zehani, B. Khennaoui, F. Bouremmad, and H. Zaioune, Effect of Precursor Concentration and Annealing Temperature on the Structural, Optical and Electrical Properties of Pure α-Fe2O3 Thin Films Elaborated by the Spin-Coating Method. Mater. Chem. Phys. 276, 125367 (2022). https://doi.org/10.1016/J.MATCHEMPHYS.2021.125367.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif