T. Lottermoser and D. Meier, A short history of multiferroics. Phys. Sci. Rev. 6, 20200032 (2020).
R. Gupta and R.K. Kotnala, A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications. J. Mater. Sci. 57, 12710 (2022).
G. Pradhan, F. Celegato, A. Magni, M. Coisson, G. Barrera, P. Rizzi, and P. Tiberto, Electric field control of magnetization reversal in FeGa/PMN-PT thin films. J. Phys. Mater. 7, 015016 (2024).
Z. De Yu, and X.M. Chen, Electrical conduction of Ba(Ti0.99Fe0.01)O3−δ ceramic at high temperatures. J. Electron. Mater. 47, 3459 (2018).
S.K. Ray, J. Cho, and J. Hur, A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment. J. Environ. Manag. 290, 112679 (2021).
E. Prokhorov, G.L. Bárcenas, B.L. España Sánchez, B. Franco, F. Padilla-Vaca, M.A. Hernández Landaverde, J.M. Yáñez Limón, and R.A. López, Chitosan-BaTiO3 nanostructured piezopolymer for tissue engineering. Colloids Surf. B Biointerfaces 196, 111 (2020).
P. Xiong, M. Xiao, Z. Yao, H. Liu, and H. Hao, Improving the energy storage performance of barium titanate-based ceramics through the addition of ZnO-Bi2O3-SiO2 glass. Crystals 14, 242 (2024).
L. Yuan, W. Fan, X. Yang, S. Ge, C. Xia, S.Y. Foong, R.K. Liew, S. Wang, Q. Van Le, and S.S. Lam, Piezoelectric PAN/BaTiO3 nanofiber membranes sensor for structural health monitoring of real-time damage detection in composite. Compos. Commun. 25, 100680 (2021).
M. Zhou, R. Liang, Z. Zhou, and X. Dong, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528 (2018).
H. Kalhori, I.C. Amaechi, A.H. Youssef, A. Ruediger, and A. Pignolet, Catalytic activity of BaTiO3 nanoparticles for wastewater treatment: Piezo- or Sono-driven? ACS Appl. Nano Mater. 6, 1686 (2023).
U. Younas, M. Atif, A. Anjum, M. Nadeem, T. Ali, R. Shaheen, W. Khalid, and Z. Ali, Fabrication of La3+ doped Ba1−xLaxTiO3 ceramics with improved dielectric and ferroelectric properties using a composite-hydroxide-mediated method. RSC Adv. 13, 5293 (2023).
CAS PubMed PubMed Central Google Scholar
M. Sendova, B.D. Hosterman, R. Raud, T. Hartmann, and D. Koury, Temperature-dependent, micro-raman spectroscopic study of barium titanate nanoparticles. J. Raman Spectrosc. 46, 25 (2015).
S. Ramakanth, and K.C. James Raju, Charge transfer induced magnetism in sol–gel derived nanocrystalline BaTiO3. Solid State Commun. 187, 59 (2014).
A. Raeliarijaona, and H. Fu, Ferromagnetism in ferroelectric BaTiO3 induced by vacancies: sensitive dependence on charge state, origin of magnetism, and temperature range of existence. Phys. Rev. B 96, 1 (2017).
N.V. Dang, T.L. Phan, T.D. Thanh, V.D. Lam, and L.V. Hong, Structural phase separation and optical and magnetic properties of BaTi1-XMnXO3 multiferroics. J. Appl. Phys. 111, 113913 (2012).
P. Pal et al., Origin and tuning of room-temperature multiferroicity in Fe-doped BaTiO3. Phys. Rev. B 101, 1 (2020).
T.L. Phan, P.D. Thang, T.A. Ho, T.V. Manh, T.D. Thanh, V.D. Lam, N.T. Dang, and S.C. Yu, Local geometric and electronic structures and origin of magnetism in co-doped BaTiO3 multiferroics. J. Appl. Phys. 117, 1 (2015).
A. Rani, J. Kolte, and P. Gopalan, Structural, electrical, magnetic and magnetoelectric properties of co-doped BaTiO3 multiferroic ceramics. Ceram. Int. 44, 16703 (2018).
N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, and T.L. Phan, Structural, optical and magnetic properties of polycrystalline BaTi -XFexO3 ceramics. J. Appl. Phys. 110, 043914 (2011).
Y.J. Choi, S.W. Kim, T.L. Phan, B.W. Lee, and D.S. Yang, Tetragonal-structural changes influenced the magnetic and ferroelectric properties of (Y, Fe)-codoped BaTiO3 ceramics. Curr. Appl. Phys. 53, 39 (2023).
P. Maneesha, K.S. Samantaray, S.C. Baral, G. Brzykcy, I. Bhaumik, A. Mekki, A.K. Pathak, and S. Sen, Effect of oxygen vacancies and cationic valence state on multiferroicity and magnetodielectric coupling in (1–x)BaTiO3.(x)LaFeO3 solid solution. J. Alloys Compd. 971, 172587 (2024).
Z. Chchiyai, F. El Bachraoui, Y. Tamraoui, E.M. Haily, L. Bih, A. Lahmar, J. Alami, and B. Manoun, Design, structural evolution, optical, electrical and dielectric properties of perovskite ceramics Ba1-XBixTi1-XFexO3 (0 ≤ x ≤ 0.8). Mater. Chem. Phys. 273, 125096 (2021).
J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 55 (1993).
H. Zhang, B. Cheng, Q. Li, B. Liu, and Y. Mao, Morphology-tuned phase transitions of horseshoe shaped BaTiO3 nanomaterials under high pressure. J. Phys. Chem. C 122, 5188 (2018).
U.D. Venkateswaran and V.M. Naik, High-pressure Raman studies of polycrystalline. Phys. Rev. B Condens. Matter Mater. Phys. 58, 14256 (1998).
Z. Raddaoui, B. Smiri, A. Maaoui, J. Dhahri, R. M’Ghaieth, N. Abdelmoula, and K. Khirouni, Correlation of crystal structure and optical properties of Ba0.97Nd0.0267Ti(1–x)WxO3 perovskite. RSC Adv. 8, 27870 (2018).
CAS PubMed PubMed Central Google Scholar
W. An et al. Assignment for vibrational spectra of BaTiO3 ferroelectric ceramic based on the first-principles calculation. Wuli Huaxue Xuebao Acta Phys. Chim. Sin. 31, 1059 (2015).
M.A. Ansari and K. Sreenivas, Effects of disorder activated scattering and defect-induced phase on the ferroelectric properties of BaSnxTi1-XO3 (0≤x≤028) ceramics. Ceram. Int. 45, 20738 (2019).
T.A. Tran et al., High pressure effects on ferroelectric tetragonal phase in BaTi1-XFexO3 (x = 1%). Mod. Phys. Lett. B 38, 2350206 (2024).
K. Anand, M. Alam, A. Pal, P. Singh, S. Kumari, A.G. Joshi, A. Das, A. Mohan, and S. Chatterjee, Existence of griffiths phase and unusual spin dynamics in double perovskite Tb2CoMnO6. J. Magn. Magn. Mater. 528, 167697 (2021).
V. Biju, N. Sugathan, V. Vrinda, and S.L. Salini, Estimation of lattice strain in nanocrystalline silver from x-ray diffraction line broadening. J. Mater. Sci. 43, 1175 (2008).
E.J. Mittemeijer and U. Welzel, The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Zeitschrift Fur Krist 223, 552 (2008).
S. Joshi, M. Kumar, S. Chhoker, A. Kumar, and M. Singh, Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 426, 252 (2017).
C. Miot, E. Husson, C. Proust, R. Erre, J.P. Coutures, and I. Introduction, Barium titanate ceramics prepared by the citric route. J. Mater. Res. 12, 2388 (1997).
C. Miot, E. Husson, C. Proust, R. Erre, and J.P. Coutures, Residual carbon evolution in BaTiO3 ceramics studied by XPS after ion etching. J. Eur. Ceram. Soc. 18, 339 (1998).
I. Spasojevic, G. Sauthier, J.M. Caicedo, A. Verdaguer, and N. Domingo, Oxidation processes at the surface of BaTiO3 thin films under environmental conditions. Appl. Surf. Sci. 565, 150288 (2021).
K. Tanwar, D.S. Gyan, S. Bhattacharya, S. Vitta, A. Dwivedi, and T. Maiti, Enhancement of thermoelectric power factor by inducing octahedral ordering in La2-XSrxCoFeO6 double perovskites. Phys. Rev. B 99, 174105 (2019).
L. Zhou, Y. Zhang, S. Li, Q. Lian, J. Yang, W. Bai, and X. Tang, Fe doping effect on the structural, ferroelectric and magnetic properties of polycrystalline BaTi1−xFexO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 14487 (2020).
J. Lombardi, L. Yang, F.A. Pearsall, N. Farahmand, Z. Gai, S.J.L. Billinge, and S. O’Brien, Stoichiometric control over ferroic behavior in Ba(Ti1–xFex)O3 nanocrystals. Chem. Mater. 31, 1318 (2019).
F.A. Pearsall, J. Lombardi, S. O’Brien, and S. O’Brien, Monomer derived poly(furfuryl)/BaTiO3 0–3 nanocomposite capacitors: maximization of the effective permittivity through control at the interface. ACS Appl. Mater. Interfaces 9, 40324 (2017).
G. Herrera-Pérez, O. Solis-Canto, G. Silva-Vidaurri, S. Pérez-García, R. Borja-Urby, F. Paraguay-Delgado, G. Rojas-George, A. Reyes-Rojas, and L. Fuentes-Cobas, Multiplet structure for perovskite-type Ba0.9Ca0.1Ti0.9Zr0.1O3 by core-hole spectroscopies. J. Appl. Phys. 128, 064106 (2020).
D.G. Popescu, N. Barrett, C. Chirila, I. Pasuk, and M.A. Husanu, Influence of hole depletion and depolarizing field on the BaTiO3/La0.6Sr0.4MnO3 interface electronic structure revealed by photoelectron spectroscopy and first-principles calculations. Phys. Rev. B Condens. Matter Mater. Phys. 92, 235442 (2015).
H. Wang, Z. Guo, W. Hao, L. Sun, Y. Zhang, and E. Cao, Ethanol sensing characteristics of BaTiO3/LaFeO3 nanocomposite. Mater. Lett. 234, 40 (2019).
R. Revathy, N. Kalarikkal, M.R. Varma, and K.P. Surendran, Exchange-spring mechanism and Griffiths-like phase in room-temperature magnetoelectric Ni-BaTiO3 composites. Mater. Adv. 2, 4702 (2021).
Y. Shuai, S. Zhou, D. Bürger, H. Reuther, I. Skorupa, V. John, M. Helm, and H. Schmidt, Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. J. Appl. Phys. 109, 084105 (2011).
P.E. Rubavathi, M.V. Babu, B. Bagyalakshmi, L. Venkidu, D. Dhayanithi, N.V. Giridharan, and B. Sundarakannan, Impact of Ba/Ti ratio on the magnetic properties of BaTiO3 ceramics. Vacuum 159, 374 (2019).
T. Chakraborty, S. Ray, and M. Itoh, Defect-induced magnetism: test of dilute magnetism in Fe-doped hexagonal BaTiO3 single crystals. Phys. Rev. B Condens. Matter Mater. Phys. 83, 144407 (2011).
D. Cao, M.Q. Cai, Y. Zheng, and W.Y. Hu, First-principles study for vacancy-induced magnetism in nonmagnetic ferroelectric BaTiO3. Phys. Chem. Chem. Phys. 11, 10934 (2009).
留言 (0)