Structural, Magnetic, and Ferroelectric Phase Transitions and Energy Storage Efficiency in Ba1-xLaxTi1-xFexO3 Ceramics

T. Lottermoser and D. Meier, A short history of multiferroics. Phys. Sci. Rev. 6, 20200032 (2020).

Google Scholar 

R. Gupta and R.K. Kotnala, A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications. J. Mater. Sci. 57, 12710 (2022).

CAS  Google Scholar 

G. Pradhan, F. Celegato, A. Magni, M. Coisson, G. Barrera, P. Rizzi, and P. Tiberto, Electric field control of magnetization reversal in FeGa/PMN-PT thin films. J. Phys. Mater. 7, 015016 (2024).

CAS  Google Scholar 

Z. De Yu, and X.M. Chen, Electrical conduction of Ba(Ti0.99Fe0.01)O3−δ ceramic at high temperatures. J. Electron. Mater. 47, 3459 (2018).

CAS  Google Scholar 

S.K. Ray, J. Cho, and J. Hur, A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment. J. Environ. Manag. 290, 112679 (2021).

CAS  Google Scholar 

E. Prokhorov, G.L. Bárcenas, B.L. España Sánchez, B. Franco, F. Padilla-Vaca, M.A. Hernández Landaverde, J.M. Yáñez Limón, and R.A. López, Chitosan-BaTiO3 nanostructured piezopolymer for tissue engineering. Colloids Surf. B Biointerfaces 196, 111 (2020).

Google Scholar 

P. Xiong, M. Xiao, Z. Yao, H. Liu, and H. Hao, Improving the energy storage performance of barium titanate-based ceramics through the addition of ZnO-Bi2O3-SiO2 glass. Crystals 14, 242 (2024).

CAS  Google Scholar 

L. Yuan, W. Fan, X. Yang, S. Ge, C. Xia, S.Y. Foong, R.K. Liew, S. Wang, Q. Van Le, and S.S. Lam, Piezoelectric PAN/BaTiO3 nanofiber membranes sensor for structural health monitoring of real-time damage detection in composite. Compos. Commun. 25, 100680 (2021).

Google Scholar 

M. Zhou, R. Liang, Z. Zhou, and X. Dong, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528 (2018).

CAS  Google Scholar 

H. Kalhori, I.C. Amaechi, A.H. Youssef, A. Ruediger, and A. Pignolet, Catalytic activity of BaTiO3 nanoparticles for wastewater treatment: Piezo- or Sono-driven? ACS Appl. Nano Mater. 6, 1686 (2023).

CAS  Google Scholar 

U. Younas, M. Atif, A. Anjum, M. Nadeem, T. Ali, R. Shaheen, W. Khalid, and Z. Ali, Fabrication of La3+ doped Ba1−xLaxTiO3 ceramics with improved dielectric and ferroelectric properties using a composite-hydroxide-mediated method. RSC Adv. 13, 5293 (2023).

CAS  PubMed  PubMed Central  Google Scholar 

M. Sendova, B.D. Hosterman, R. Raud, T. Hartmann, and D. Koury, Temperature-dependent, micro-raman spectroscopic study of barium titanate nanoparticles. J. Raman Spectrosc. 46, 25 (2015).

CAS  Google Scholar 

S. Ramakanth, and K.C. James Raju, Charge transfer induced magnetism in sol–gel derived nanocrystalline BaTiO3. Solid State Commun. 187, 59 (2014).

CAS  Google Scholar 

A. Raeliarijaona, and H. Fu, Ferromagnetism in ferroelectric BaTiO3 induced by vacancies: sensitive dependence on charge state, origin of magnetism, and temperature range of existence. Phys. Rev. B 96, 1 (2017).

Google Scholar 

N.V. Dang, T.L. Phan, T.D. Thanh, V.D. Lam, and L.V. Hong, Structural phase separation and optical and magnetic properties of BaTi1-XMnXO3 multiferroics. J. Appl. Phys. 111, 113913 (2012).

Google Scholar 

P. Pal et al., Origin and tuning of room-temperature multiferroicity in Fe-doped BaTiO3. Phys. Rev. B 101, 1 (2020).

Google Scholar 

T.L. Phan, P.D. Thang, T.A. Ho, T.V. Manh, T.D. Thanh, V.D. Lam, N.T. Dang, and S.C. Yu, Local geometric and electronic structures and origin of magnetism in co-doped BaTiO3 multiferroics. J. Appl. Phys. 117, 1 (2015).

Google Scholar 

A. Rani, J. Kolte, and P. Gopalan, Structural, electrical, magnetic and magnetoelectric properties of co-doped BaTiO3 multiferroic ceramics. Ceram. Int. 44, 16703 (2018).

CAS  Google Scholar 

N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, and T.L. Phan, Structural, optical and magnetic properties of polycrystalline BaTi -XFexO3 ceramics. J. Appl. Phys. 110, 043914 (2011).

Google Scholar 

Y.J. Choi, S.W. Kim, T.L. Phan, B.W. Lee, and D.S. Yang, Tetragonal-structural changes influenced the magnetic and ferroelectric properties of (Y, Fe)-codoped BaTiO3 ceramics. Curr. Appl. Phys. 53, 39 (2023).

Google Scholar 

P. Maneesha, K.S. Samantaray, S.C. Baral, G. Brzykcy, I. Bhaumik, A. Mekki, A.K. Pathak, and S. Sen, Effect of oxygen vacancies and cationic valence state on multiferroicity and magnetodielectric coupling in (1–x)BaTiO3.(x)LaFeO3 solid solution. J. Alloys Compd. 971, 172587 (2024).

CAS  Google Scholar 

Z. Chchiyai, F. El Bachraoui, Y. Tamraoui, E.M. Haily, L. Bih, A. Lahmar, J. Alami, and B. Manoun, Design, structural evolution, optical, electrical and dielectric properties of perovskite ceramics Ba1-XBixTi1-XFexO3 (0 ≤ x ≤ 0.8). Mater. Chem. Phys. 273, 125096 (2021).

CAS  Google Scholar 

J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 55 (1993).

Google Scholar 

H. Zhang, B. Cheng, Q. Li, B. Liu, and Y. Mao, Morphology-tuned phase transitions of horseshoe shaped BaTiO3 nanomaterials under high pressure. J. Phys. Chem. C 122, 5188 (2018).

CAS  Google Scholar 

U.D. Venkateswaran and V.M. Naik, High-pressure Raman studies of polycrystalline. Phys. Rev. B Condens. Matter Mater. Phys. 58, 14256 (1998).

CAS  Google Scholar 

Z. Raddaoui, B. Smiri, A. Maaoui, J. Dhahri, R. M’Ghaieth, N. Abdelmoula, and K. Khirouni, Correlation of crystal structure and optical properties of Ba0.97Nd0.0267Ti(1–x)WxO3 perovskite. RSC Adv. 8, 27870 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

W. An et al. Assignment for vibrational spectra of BaTiO3 ferroelectric ceramic based on the first-principles calculation. Wuli Huaxue Xuebao Acta Phys. Chim. Sin. 31, 1059 (2015).

CAS  Google Scholar 

M.A. Ansari and K. Sreenivas, Effects of disorder activated scattering and defect-induced phase on the ferroelectric properties of BaSnxTi1-XO3 (0≤x≤028) ceramics. Ceram. Int. 45, 20738 (2019).

CAS  Google Scholar 

T.A. Tran et al., High pressure effects on ferroelectric tetragonal phase in BaTi1-XFexO3 (x = 1%). Mod. Phys. Lett. B 38, 2350206 (2024).

CAS  Google Scholar 

K. Anand, M. Alam, A. Pal, P. Singh, S. Kumari, A.G. Joshi, A. Das, A. Mohan, and S. Chatterjee, Existence of griffiths phase and unusual spin dynamics in double perovskite Tb2CoMnO6. J. Magn. Magn. Mater. 528, 167697 (2021).

CAS  Google Scholar 

V. Biju, N. Sugathan, V. Vrinda, and S.L. Salini, Estimation of lattice strain in nanocrystalline silver from x-ray diffraction line broadening. J. Mater. Sci. 43, 1175 (2008).

CAS  Google Scholar 

E.J. Mittemeijer and U. Welzel, The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Zeitschrift Fur Krist 223, 552 (2008).

CAS  Google Scholar 

S. Joshi, M. Kumar, S. Chhoker, A. Kumar, and M. Singh, Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 426, 252 (2017).

CAS  Google Scholar 

C. Miot, E. Husson, C. Proust, R. Erre, J.P. Coutures, and I. Introduction, Barium titanate ceramics prepared by the citric route. J. Mater. Res. 12, 2388 (1997).

CAS  Google Scholar 

C. Miot, E. Husson, C. Proust, R. Erre, and J.P. Coutures, Residual carbon evolution in BaTiO3 ceramics studied by XPS after ion etching. J. Eur. Ceram. Soc. 18, 339 (1998).

CAS  Google Scholar 

I. Spasojevic, G. Sauthier, J.M. Caicedo, A. Verdaguer, and N. Domingo, Oxidation processes at the surface of BaTiO3 thin films under environmental conditions. Appl. Surf. Sci. 565, 150288 (2021).

CAS  Google Scholar 

K. Tanwar, D.S. Gyan, S. Bhattacharya, S. Vitta, A. Dwivedi, and T. Maiti, Enhancement of thermoelectric power factor by inducing octahedral ordering in La2-XSrxCoFeO6 double perovskites. Phys. Rev. B 99, 174105 (2019).

CAS  Google Scholar 

L. Zhou, Y. Zhang, S. Li, Q. Lian, J. Yang, W. Bai, and X. Tang, Fe doping effect on the structural, ferroelectric and magnetic properties of polycrystalline BaTi1−xFexO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 14487 (2020).

CAS  Google Scholar 

J. Lombardi, L. Yang, F.A. Pearsall, N. Farahmand, Z. Gai, S.J.L. Billinge, and S. O’Brien, Stoichiometric control over ferroic behavior in Ba(Ti1–xFex)O3 nanocrystals. Chem. Mater. 31, 1318 (2019).

CAS  Google Scholar 

F.A. Pearsall, J. Lombardi, S. O’Brien, and S. O’Brien, Monomer derived poly(furfuryl)/BaTiO3 0–3 nanocomposite capacitors: maximization of the effective permittivity through control at the interface. ACS Appl. Mater. Interfaces 9, 40324 (2017).

CAS  PubMed  Google Scholar 

G. Herrera-Pérez, O. Solis-Canto, G. Silva-Vidaurri, S. Pérez-García, R. Borja-Urby, F. Paraguay-Delgado, G. Rojas-George, A. Reyes-Rojas, and L. Fuentes-Cobas, Multiplet structure for perovskite-type Ba0.9Ca0.1Ti0.9Zr0.1O3 by core-hole spectroscopies. J. Appl. Phys. 128, 064106 (2020).

Google Scholar 

D.G. Popescu, N. Barrett, C. Chirila, I. Pasuk, and M.A. Husanu, Influence of hole depletion and depolarizing field on the BaTiO3/La0.6Sr0.4MnO3 interface electronic structure revealed by photoelectron spectroscopy and first-principles calculations. Phys. Rev. B Condens. Matter Mater. Phys. 92, 235442 (2015).

Google Scholar 

H. Wang, Z. Guo, W. Hao, L. Sun, Y. Zhang, and E. Cao, Ethanol sensing characteristics of BaTiO3/LaFeO3 nanocomposite. Mater. Lett. 234, 40 (2019).

CAS  Google Scholar 

R. Revathy, N. Kalarikkal, M.R. Varma, and K.P. Surendran, Exchange-spring mechanism and Griffiths-like phase in room-temperature magnetoelectric Ni-BaTiO3 composites. Mater. Adv. 2, 4702 (2021).

CAS  Google Scholar 

Y. Shuai, S. Zhou, D. Bürger, H. Reuther, I. Skorupa, V. John, M. Helm, and H. Schmidt, Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. J. Appl. Phys. 109, 084105 (2011).

Google Scholar 

P.E. Rubavathi, M.V. Babu, B. Bagyalakshmi, L. Venkidu, D. Dhayanithi, N.V. Giridharan, and B. Sundarakannan, Impact of Ba/Ti ratio on the magnetic properties of BaTiO3 ceramics. Vacuum 159, 374 (2019).

Google Scholar 

T. Chakraborty, S. Ray, and M. Itoh, Defect-induced magnetism: test of dilute magnetism in Fe-doped hexagonal BaTiO3 single crystals. Phys. Rev. B Condens. Matter Mater. Phys. 83, 144407 (2011).

Google Scholar 

D. Cao, M.Q. Cai, Y. Zheng, and W.Y. Hu, First-principles study for vacancy-induced magnetism in nonmagnetic ferroelectric BaTiO3. Phys. Chem. Chem. Phys. 11, 10934 (2009).

CAS 

留言 (0)

沒有登入
gif