M.A. Mahdi, S.R. Yousefi, L.S. Jasim, and M.S. Niasari, Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 47, 14319 (2022).
S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M.H. Oghaz, and M.S. Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104, 2952 (2021).
S.T. Fardood, R. Forootan, F. Moradnia, Z. Afshari, and A. Ramazani, Green synthesis, characterization, and photocatalytic activity of cobalt chromite spinel nanoparticles. Mater. Res. Express 7, 015086 (2020).
P. Mehdizadeh, M. Jamdar, M.A. Mahdi, W.K. Abdulsahib, L.S. Jasim, S.R. Yousefi, and M.S. Niasari, Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water. Arab. J. Chem. 16, 104579 (2023).
Y. Gao, Y. Wu, H. Lu, C. Chen, Y. Liu, X. Bai, L. Yang, W.W. Yu, Q. Dai, and Y. Zhang, CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy 59, 517 (2019).
Y.D. Kolekar, L. Sanchez, E.J. Rubio, and C.V. Ramana, Grain and grain boundary effects on the frequency and temperature dependent dielectric properties of cobalt ferrite–hafnium composites. Solid State Commun. 184, 34 (2014).
J. Wanga, B. Wang, A. Feng, Z. Jia, and G. Wu, Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement. J Alloys Compd. 834, 155092 (2020).
S.R. Yousefi, O. Amiri, and M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019).
W. Zhang, A. Sun, X. Zhao, X. Pan, Y. Han, N. Suo, L. Yu, and Z. Zuo, Structural and magnetic properties of Ni–Cu–Co ferrites prepared from sol-gel auto combustion method with different complexing agents. J. Alloys Compd. 816, 152501 (2020).
J. Pei, Z. Wang, Y. Gao, and H. Zhang, Structure and magnetic properties of Ni0.5Zn0.5Mn0.5-xMoxFe1.5O4 ferrites prepared by sol-gel auto-combustion method. Curr. Appl. Phys. 19, 440 (2019).
S.A.S. Ebrahimi, and S.M. Masoudpanah, Effects of pH and citric acid content on the structure and magnetic properties of MnZn ferrite nanoparticles synthesized by a sol–gel autocombustion method. J. Magn. Magn. Mater. 357, 77 (2014).
P.P. Hankare, S.D. Jadhav, U.B. Sankpal, S.S. Chavan, K.J. Waghmare, and B.K. Chougule, Synthesis, characterization and effect of sintering temperature on magnetic properties of MgNi ferrite prepared by co-precipitation method. J. Alloys Compd. 475, 926 (2009).
N. Mechi, A. Mallah, S. Hcini, M.L. Bouazizi, M. Boudard, and A. Dhahri, Effects of sintering temperature on microstructural, magnetic, and impedance spectroscopic properties of Ni0.4Cd0.3Zn0.3Fe2O4 Ferrites. J. Supercond. Nov. Magn. 33, 1547 (2020).
A. Hakeem, T. Alshahrani, G. Muhammad, M.H. Alhossainy, A. Laref, A.R. Khan, I. Ali, H.M.T. Farid, T. Ghrib, S.R. Ejaz, and R.Y. Khosa, Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. J. Mater. Res. Technol. 11, 158 (2021).
K.Y. Butt, S. Aman, A.A. AlObaid, T.I. Al-Muhimeed, A. Rehman, H.H. Hegazy, N. Ahmad, A.R. Khan, S.R. Ejaz, and H.M.T. Farid, The study of structural, magnetic and dielectric properties of spinel ferrites for microwave absorption applications. Appl. Phys. A 127, 714 (2021).
Y.Ş Asar, Ö. Sevgili, and Ş Altındal, Investigation of dielectric relaxation and ac conductivity in Au/(carbon nanosheet-PVP composite)/n-Si capacitors using impedance measurements. Altındal J. Mater. Sci. Mater. Electron. 34, 893 (2023).
Ö. Sevgili, Y. Azizian-Kalandaragh, and Ş Altındal, Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Altındal Physica B Condens. Matter 587, 412122 (2020).
S.L. Galagali, R.A. Patil, R.B. Adaki et al., Electrical and magnetic properties of Mg1–xCdxFe2O4 ferrites (x = 0.2, 0.4, 0.6, 0.8). Int. J. Self-Propag. High-Temp. Synth. 27, 107 (2018).
A.B. Gadkari, T.J. Shinde, and P.N. Vasambekar, Structural and magnetic properties of nanocrystalline Mg–Cd ferrites prepared by oxalate co-precipitation method. J. Mater. Sci. Mater. Electron. 21, 96 (2010).
M. Abhishek, E. Melagiriyappa, M. Irfan, M. Veena, B.N. Anandaram, and H.M. Somashekarappa, Influence of gamma irradiation on structural and DC conductivity properties of Mg-Cd nanoferrites. AIP Conf. Proc. 2244, 090001 (2020).
A.B. Gadkari, T.J. Shinde, and P.N. Vasambekar, Influence of rare earth ion (Y3+) on the magnetic and dc electrical properties of high density nanocrystalline Mg single bond Cd ferrites. Mat. Res. Bull. 48, 476 (2013).
A.B. Gadkari, T.J. Shinde, and P.N. Vasambekar, Synthesis, characterization and magnetic properties of La3+ added Mg–Cd ferrites prepared by oxalate co-precipitation method. J. Alloy. Compd. 509, 966 (2011).
L. Sun, J. Guo, R. Zhang, E. Cao, Y. Zhang, W. Hao et al., Influence of Cu2+ doping on the structure, dielectric and magnetic properties of NiFe2O4 prepared by the sol-gel method. J. Magn. Magn. Mater. 449, 545 (2018).
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751 (1976).
R. Zahir, F.U.Z. Chowdhury, M.M. Uddin, and M.A. Hakim, Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 410, 55 (2016).
A. Abbasi, S.M.S. Sajadi, O. Amiri, M. Hamadanian, H. Moayedi, M. Salavati-Niasari, and M.M. Beigi, MgCr2O4 and MgCr2O4/Ag nanostructures: facile size-controlled synthesis and their photocatalytic performance for destruction of organic contaminants. Compos. Part B 175, 107077 (2019).
M.L. Bouazizi, S. Hcini, K. Khirouni, F. Najar, and A.H. Alshehri, Structural and optoelectronic properties of mixed Mg-Cu-Cd spinel chromites prepared by the sol–gel method under different calcination temperatures. J. Inorg. Organomet. Polym. 33, 2127 (2023).
S. Saleem, M.H. Jameel, A.A. Alothman, M.Z.H.B. Mayzan, T. Yousaf, M.R. Ahmad, A. Ali, and A. Zaman, A band gap engineering for the modification in electrical properties of Fe3O4 by Cu2+ doping for electronic and optoelectronic devices applications. J. Sol-Gel Sci. Technol. 109, 82 (2024).
V.M. Khot, A.B. Salunkhe, M.R. Phadatare, and S.H. Pawar, Formation, microstructure and magnetic properties of nanocrystalline MgFe2O4. Mater. Chem. Phys. 132, 782 (2012).
N. Kouki, S. Hcini, M. Boudard, R. Aldawas, and A. Dhahri, Microstructural analysis, magnetic properties, magnetocaloric effect, and critical behaviors of Ni0.6Cd0.2Cu0.2Fe2O4 ferrites prepared using the sol–gel method under different sintering temperatures. RSC Adv. 9, 1990 (2019).
CAS PubMed PubMed Central Google Scholar
T. Dabbebi, S. Hcini, B. Alzahrani, H. Rahmouni, A. Mallah, E. Dhahri, and M.L. Bouazizi, Investigations of microstructural and impedance spectroscopic properties of Mg0.5Co0.5Fe1.6Al0.4O4 ferrite prepared using sol–gel method. J. Mater. Sci.: Mater. Electron. 32, 12521 (2021).
M. Rahimi, P. Kameli, M. Ranjbar, and H. Salamati, The effect of sintering temperature on evolution of structural and magnetic properties of nanostructured Ni0.3Zn0.7Fe2O4 ferrite. J. Nanopart. Res. 15, 1865 (2013).
R.P. Patil, P.P. Hankare, K.M. Garadkar, and R. Sasikala, Effect of sintering temperature on structural, magnetic properties of lithium chromium ferrite. J. Alloys Compd. 523, 66 (2012).
F. Zamani, and A.H. Taghvaei, Characterization and magnetic properties of nanocrystalline Mg1-xCdxFe2O4 (x = 0.0–0.8) ferrites synthesized by glycine-nitrate autocombustion method. Ceram. Int. 44, 17209 (2018).
A. Gholizadeh, and E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328 (2017).
M. Basak, M. Lutfor Rahman, M. Farid Ahmed, B. Biswas, and N. Sharmin, Calcination effect on structural, morphological and magnetic properties of nano-sized CoFe2O4 developed by a simple co-precipitation technique Mater. Chem. Phys. 264, 124442 (2021).
T. Dippong, O. Cadar, E.A. Levei, and I.G. Deac, Microstructure, porosity and magnetic properties of Zn0.5Co0.5Fe2O4/SiO2 nanocomposites prepared by sol-gel method using different polyols. J. Magn. Magn Mater. 498, 166168 (2020).
M.M. Rhaman, M.A. Matin, M.A. Hakim, and M.F. Islam, Bandgap tuning of samarium and cobalt co-doped bismuth ferrite nanoparticles. Mater. Sci. Eng. B 263, 114842 (2021).
S. Karmakar, S. Varma, and D. Behera, Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials. J. Alloys Compd. 757, 49 (2018).
S. Karmakar, and D. Behera, Non-overlapping small polaron tunneling conduction coupled dielectric relaxation in weak ferromagnetic NiAl2O4. J. Phys. Condens. Matter 31, 245701 (2019).
M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, and A. Jemni, Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2Fe2O4 ferrite nanoparticle. Appl. Phys. A 123, 8 (2017).
M. Nadeem, M.J. Akhtar, and A.Y. Khan, Effects of low frequency near metal-insulator transition temperatures on polycrystalline La0.65Ca0.35Mn1−yFeyO3 (where y = 0.05–0.10) ceramic oxides. J. Solid State Commun. 134, 431 (2005).
M. Nadeem, M.J. Akhtar, A.Y. Khan, R. Shaheen, and M.N. Hoque, Ac study of 10% Fe-doped La0.65Ca0.35MnO3 material by impedance spectroscopy. Chem. J. Phys. Lett. 366, 433 (2002).
Johnson D. Z View: a software program for IES analysis. Version 2.8. Southern Pines, NC: Scribner Associates, Inc.; 2008.
M.L. Bouazizi, J. Khelifi, K. Khirouni, S. Hcini, A.H. Alshehri, and F. Najar, Synthesis and investigation on the structural, optical, and electrical proprieties of Nd0.5Ce0.5CoO3 prepared using sol–gel route for various application. J. Mater. Sci.: Mater. Electron. 34, 630 (2023).
留言 (0)