Y. Tokura, S. Seki, and N. Nagaosa, Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014). https://doi.org/10.1088/0034-4885/77/7/076501.
Article CAS PubMed Google Scholar
F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3, Acta Crystallogr. Sect. B. 46 (1990) 698–702. https://doi.org/10.1107/S0108768190006887.
P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C Solid State Phys. 13, 1931–1940 (1980). https://doi.org/10.1088/0022-3719/13/10/012.
G. Catalan and J.F. Scott, Physics and Applications of Bismuth Ferrite. Adv. Mater. 21(24), 2463–2485 (2009).
J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, and D. Viehland, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003). https://doi.org/10.1126/science.1080615.
Article CAS PubMed Google Scholar
C. Michel, J. Moresu, G.D. Achenbechi, R. Gerson, and W.J. James, The Atomic structure for BiFeO3. Solid State Commun. 7, 701–704 (1969).
J.K. Kim, S.S. Kim, and W.-J. Kim, Sol–gel synthesis and properties of multiferroic BiFeO3. Mater. Lett. 59, 4006–4009 (2005). https://doi.org/10.1016/j.matlet.2005.07.050.
J. Silva, A. Reyes, H. Esparza, H. Camacho, and L. Fuentes, BiFeO3: a review on synthesis, doping and crystal structure. Integr. Ferroelectr. 126, 47–59 (2011). https://doi.org/10.1080/10584587.2011.574986.
J. Wu, Z. Fan, D. Xiao, J. Zhu, and J. Wang, Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 84, 335–402 (2016).
R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C 114, 21390–21396 (2010). https://doi.org/10.1021/jp104660a.
P. Godara, A. Agarwal, N. Ahlawat, and S. Sanghi, Crystal structure, dielectric and magnetic properties of Gd doped BiFeO3 multiferroics. Physica B 550, 414–419 (2018).
V.A. Khomchenko, V.V. Shvartsman, P. Borisov, W. Kleemann, D.A. Kiselev, I.K. Bdikin, J.M. Vieira, and A.L. Kholkin, Effect of Gd substitution on the crystal structure and multiferroic properties of BiFeO3. Acta Mater. 57(17), 5137–5145 (2009).
A. Ablat, R. Wu, M. Mamat, J. Li, E. Muhemmed, C. Si, R. Wu, J. Wang, H. Qian, and K. Ibrahim, Structural analysis and magnetic properties of Gd doped BiFeO3 ceramics. Ceramics Int. 40(9), 14083–14089 (2014).
S. Pattanayak, R.N. Choudhary, S.R. Shannigrahi, P.R. Das, and R. Padhee, Ferroelectric and ferromagnetic properties of Gd-modified BiFeO3. J Magn. Magnetic Mater. 341, 158–164 (2013).
J.A.M. Cagigas, D.S. Candela, and E. Baggio-Saitovitch, Effect of rare earth doping on BiFeO3 magnetic and structural properties (La, Gd). J. Phys. Conf. Ser. 200, 12134 (2010). https://doi.org/10.1088/1742-6596/200/1/012134.
T. Durga Rao, B. Sattibabu, S. Asthana, Predicting High Magneto-Electric Coupling in Gd Substituted BiFeO3, Phys. Status Solidi. 256 (2019) 1900097. https://doi.org/10.1002/pssb.201900097.
P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, and R.R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect 3, 9025–9033 (2018). https://doi.org/10.1002/slct.201801198.
N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin, and Y. Huang, Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 6, 26467 (2016). https://doi.org/10.1038/srep26467.
Article CAS PubMed PubMed Central Google Scholar
T. El Bahraoui, M. Taibi, A.M. El-Naggar, T.S. Tlemçani, A.A. Albassam, M. Abd-Lefdil, I.V. Kityk, N.S. AlZayed, and A.O. Fedorchuk, Multiferroic Eu doped BiFeO3 microparticle polymer composites as materials for laser induced gratings. J. Mater. Sci. Mater. Electron. 26, 9949–9954 (2015). https://doi.org/10.1007/s10854-015-3671-2.
T.S. Tlemçani, T. El Bahraoui, M. Taibi, A. Belayachi, G. Schmerber, A. Dinia, and M. Abd-Lefdil, Effect of Nd substitution on physical properties of multiferroic compound BiFeO3. J. Sol-Gel Sci. Technol. 73, 673–678 (2015). https://doi.org/10.1007/s10971-015-3654-z.
T. Liu, Y. Xu, S. Feng, and J. Zhao, A facile route to the synthesis of BiFeO3 at low temperature. J. Am. Ceram. Soc. 94, 3060–3063 (2011). https://doi.org/10.1111/j.1551-2916.2011.04536.x.
A. Mukherjee, S.M. Hossain, M. Pal, and S. Basu, Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles. Appl. Nanosci. 2, 305–310 (2012). https://doi.org/10.1007/s13204-012-0114-8.
S. Chandel, P. Thakur, M. Tomar, V. Gupta, and A. Thakur, Investigation of structural, optical, dielectric and magnetic studies of Mn substituted BiFeO3 multiferroics. Ceramics Int. 43(16), 13750–13758 (2017).
A. El-Bey, S. Dinia, T. El Bahraoui, L. Boudad, M. Taibi, A. Belayachi, and M. Abd-Lefdil, Phase transitions in multiferroic Bi 1–x Eu x FeO 3 synthesized by sol-gel method. Phys. Scr. 98(2), 025015 (2023).
J. Landers, S. Salamon, M. Escobar Castillo, D.C. Lupascu, and H. Wende, Mossbauer study of temperature-dependent cycloidal ordering in BiFeO3 nanoparticles. Nano Lett. 14(11), 6061–6065 (2014).
Article CAS PubMed Google Scholar
R. Mazumder, P. Sujatha Devi, P. Dipten Bhattacharya, A. Choudhury, and M. Sen, Ferromagnetism in nanoscale BiFeO3. Appl Phy Lett (2007). https://doi.org/10.1063/1.2768201.
留言 (0)