M. Manendar, S.S.K. Reddy, J. Ramesh, M.S. Reddy, M.M. Raja, Ch.G. Reddy, P.Y. Reddy, and V.R. Reddy, Cation distribution in Ni substituted Ba0.5Sr1.5Co2Fe12O22 Y-type hexagonal ferrites. Ceram. Int. 47(7), 9591 (2021). https://doi.org/10.1016/j.ceramint.2020.12.094.
G. Murtaza, R. Ahmad, T. Hussain, R. Ayub, I. Ali, M.A. Khan, and M.N. Akhtar, Structural and magnetic properties of Nd–Mn substituted Y-type hexaferrites synthesized by microemulsion method. J. Alloys Compd. 602, 122 (2014). https://doi.org/10.1016/j.jallcom.2014.02.156.
M. Junaid, M. Nadeem, S.A. Abubshait, H.A. Abubshait, M.A. Khan, Z.A. Gilani, and M.F. Warsi, Impact of Bi-Cr substitution on the structural, spectral, dielectric and magnetic properties of Y-type hexaferrites. Ceram. Int. 46(16), 25478 (2020). https://doi.org/10.1016/j.ceramint.2020.07.018.
I. Ali, M.U. Islam, M.N. Ashiq, M.A. Iqbal, N. Karamat, M.S. Awan, and S. Naseem, Role of Tb-Mn substitution on the magnetic properties of Y-type hexaferrites. J. Alloys Compd. 599, 131 (2014). https://doi.org/10.1016/j.jallcom.2014.02.079.
Y. Bai, F. Xu, L. Qiao, and J. Zhou, Effect of Mn doping on physical properties of Y-type hexagonal ferrite. J. Alloys Compd. 473(2), 505 (2009). https://doi.org/10.1016/j.jallcom.2008.06.011.
M.J. Iqbal and F. Liaqat, Physical and electrical properties of nano sized Mn-and Cr-doped strontium Y-Type hexagonal ferrites. J. Am. Ceram. Soc. 93(2), 474 (2010). https://doi.org/10.1111/j.1551-2916.2009.03385.x.
R. Vinaykumar, J.B. Jyoti, Electromagnetic properties of La-Co substituted Zn2Y type hexagonal ferrite for microwave device applications, in 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), 19 (2017). https://doi.org/10.1109/PIERS-FALL.2017.8293130
M. Nadeem, H.M. Khan, S.A. Buzdar, J. Ahmed, M.A. Assiri, M. Imran, M.E. Mazhar, M. Nisa, M.E. Raza, B. Raza, and M. Jamshed, Structural, dielectric, and magnetic properties of CaBaCo2-xZnxNdyFe12-yO22 Y-type hexaferrites. J. Mater. Sci. Mater. Electron. 33(9), 6294 (2022). https://doi.org/10.1007/s10854-022-07804-x.
M. Chandel, V.P. Singh, R. Jasrotia, K. Singha, M. Singh, P. Thakur, and S. Kalia, Fabrication of Ni2+ and Dy3+ substituted Y-Type nanohexaferrites: a study of structural and magnetic properties. Physica B 595, 412378 (2020). https://doi.org/10.1016/j.physb.2020.412378.
R. Tholkappiyan, K. Vishista, and F. Hamed, Factors controlling phase formation of novel Sr-based Y-type hexagonal ferrite nanoparticles. Pramana 88, 1 (2017). https://doi.org/10.1007/s12043-016-1325-4.
K.R. Obulesu, T.S. Rao, and K.J. Raju, Magnetic and microwave dielectric properties of Y-type Sr doped Ba2Zn2Fe12O22 hexagonal ferrite. J. Alloys Compd. 695, 3030 (2017). https://doi.org/10.1016/j.jallcom.2016.11.352.
J. Mohammed, K.M. Batoo, A.S. Abdulaziz, A.S. Safana, H.Y. Hafeez, E.H. Raslan, M. Hadi, A.K. Assiafan, A. Imran, and A.K. Srivastava, Crystal structure refinement and the magnetic and electro-optical properties of Er3+–Mn2+-substituted Y-type barium hexaferrites. Ceram. Int. 47(13), 18455 (2021). https://doi.org/10.1016/j.ceramint.2021.03.169.
V.V. Warhate and D.S. Badwaik, Structural, magnetic and thermo-magnetic properties of NiMn Y-Type strontium nano-hexaferrites. J. Alloys Compd. 818, 152830 (2020). https://doi.org/10.1016/j.jallcom.2019.152830.
B. Georgieva, S. Kolev, K. Krezhov, D. Ch Ghelev, P.T. Kovacheva, L.-M. Tran, and M. Babij, Substitution effects on Y-type hexaferrites’ magnetic characteristics. J. Phys. Conf. Ser. 2710, 012031 (2024). https://doi.org/10.1088/1742-6596/2710/1/012031.
M. Ahmad, I. Ali, M.U. Islam, and M.U. Rana, Investigation of Co-substituted nanosized Mn2Y-hexaferrites synthesized by sol-gel autocombustion method. J. Mater. Eng. Perform. 22, 1059 (2013). https://doi.org/10.1007/s11665-013-0662-4.
B. Srikanth, V. Nagendar, M. Manendar, N. Raju, M.S. Reddy, C.G. Reddy, and P.Y. Reddy, Structural, magnetic and Mössbauer studies of Ba0.5Sr1.5Me2Fe12O22 (where Me=Co, Zn and Ni) Y type hexaferrites. J. Mater. Sci. Mater. Electron. 35, 958 (2024). https://doi.org/10.1007/s10854-024-12727-w.
L. Lin, J.S. Li, P.H. Shi, X.H. Dong, J.H. Zhang, L. Huang, B. Yu, G.Z. Zhou, S.H. Zheng, M.F. Liu, Y.Y. Guo, X. Lu, T.P. Hu, X.H. Zhou, Z.B. Yan, and J.-M. Liu, Switching of magnetoelectric states in the Y-type hexaferrite Ba0.5Sr1.5CoMgFe11AlO22. J. Appl. Phys. 136, 034101 (2024). https://doi.org/10.1063/5.0218683.
A. Jafari, S. Monsef, H. Shokrollahi, and O. Mirzaee, The role of Sn and Zn substitutions on the magnetic properties of nanosized Y-type hexaferrite prepared by sol-gel auto-combustion method. J. Phys. Scr. 99, 035933 (2024). https://doi.org/10.1088/1402-4896/acfc89.
A. Urrehman, S.F. Shauka, M.N. Akhtar, and M. Ahmad, Evaluations of structural, magnetic, and various dielectric parameters of Ni-substituted Zn2W-type hexagonal ferrites for high frequency (1–6 GHz) applications. Ceram. Int. 45(18), 24202 (2019). https://doi.org/10.1016/j.ceramint.2019.08.129.
R.R. Kanna and K. Sakthipandi, Structural, morphological and optomagnetic properties of La/Cu-Mn ferrite ternary nanocomposites. J. Electron. Mater. 49(2), 1110 (2020). https://doi.org/10.1007/s11664-019-07729-y.
K. Haneda and H. Kojima, Intrinsic coercivity of substituted BaFe12O19. Jap. J. Appl. Phys. 12, 355 (1973). https://doi.org/10.1143/JJAP.12.355.
S. Ounnunkad and P. Winotai, Properties of Cr-substituted M-type barium ferrites prepared by nitrate–citrate gel-auto combustion process. J. Magn. Magn. Mater. 301, 292 (2006). https://doi.org/10.1016/j.jmmm.2005.07.003.
B.K. Rai, S.R. Mishra, V.V. Nguyen, and J.P. Liu, Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J. Alloys Compd. 550, 198 (2013). https://doi.org/10.1016/j.jallcom.2012.09.021.
C. Solliard and M. Flueli, Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf. Sci. Lett. A321, 156 (1985). https://doi.org/10.1016/0039-6028(85)90610-7.
K. Ramakanth, Basics of x-ray Diffraction and its Application (New Delhi: I.K. International Publishing House Pvt. Ltd., 2007).
X.J. Suo, W. Zhang, and P. Li, Effect of La3+ substitution on the structure and magnetic properties of M-type Sr hexaferrites. J. Supercond. Novel Magn. 36, 197 (2023). https://doi.org/10.1007/s10948-022-06450-y.
C.G. Shull, The determination of x-ray diffraction line widths. Phys. Rev. 70, 679 (1946). https://doi.org/10.1103/PhysRev.70.679.
J.M. Zhang, Y. Zhang, K.W. Xu, and V. Ji, General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun. 139, 87 (2006). https://doi.org/10.1016/j.ssc.2006.05.026.
J. Valášek, Piezo-electric and allied phenomena in rochelle salt. Phys. Rev. 17, 475 (1921). https://doi.org/10.1103/PhysRev.17.475.
M. Ahmad, M. Shahid, Y.M. Alanazi, A. Rehman, M. Asif, and C.W. Dunnill, Lithium ferrite (Li0.5Fe2.5O4): synthesis, structural, morphological and magnetic evaluation for storage devices. J. Mater. Res. Technol. 18, 3386 (2022). https://doi.org/10.1016/j.jmrt.2022.03.113.
S.R. Ejaz, M.A. Khan, S. Gulbadan, M.S. Shifa, and G. Murtaza, Structural, spectral, dielectric, and magnetic properties of Ca-Ba-substituted Sr2Ni2Fe28O46 X-type hexaferrites. Appl. Phys. A (2023). https://doi.org/10.1007/s00339-023-06444-0.
K. Jayasankar, A. Pandey, B.K. Mishra, and S. Das, Evaluation of microstructural parameters of nanocrystalline Y2O3 by x-ray diffraction peak broadening analysis. Mater. Chem. Phys. 171, 195 (2016). https://doi.org/10.1016/j.matchemphys.2016.01.005.
S.K. Wang, T.C. Lin, S.R. Jian, J.Y. Juang, J. Jang, and J.Y. Tseng, Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering. Appl. Surf. Sci. 258, 1261 (2011). https://doi.org/10.1016/j.apsusc.2011.09.088.
留言 (0)