A Facile Approach to Boost the Specific Capacity of Fluorinated Carbon Cathode for Rechargeable Na/CFx Battery

L. Wang, J. Qiu, X. Wang, L. Chen, G. Cao, J. Wang, H. Zhang, and X. He, Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2, 125 (2022).

Article  Google Scholar 

W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014).

Article  CAS  Google Scholar 

Y. Liu, J. Li, Q. Shen, J. Zhang, P. He, X. Qu, and Y. Liu, Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience 2, 10 (2022).

Article  Google Scholar 

E. Gabriel, C. Ma, K. Graff, A. Conrado, D. Hou, and H. Xiong, Heterostructure engineering in electrode materials for sodium-ion batteries: recent progress and perspectives. eScience 3, 100139 (2023).

Article  Google Scholar 

C. Li, C. Yin, X. Mu, and J. Maier, Top-down synthesis of open framework fluoride for lithium and sodium batteries. Chem. Mater. 25, 962 (2013).

Article  CAS  Google Scholar 

R. Liu, L. Yu, X. He, H. Liu, X. Ma, Z. Tao, G. Wan, N. Ahmad, B. Peng, L. Shi, and G. Zhang, Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability. eScience 3, 100138 (2023).

Article  Google Scholar 

Q. Liu, D. Wang, X. Yang, N. Chen, C. Wang, X. Bie, Y. Wei, G. Chen, and F. Du, Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J. Mater. Chem. A 3, 21478 (2015).

Article  CAS  Google Scholar 

W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y.-M. Kang, and W.-S. Yoon, Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem. Int. Ed. 59, 2578 (2020).

Article  CAS  Google Scholar 

F. Wu and G. Yushin, Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435 (2017).

Article  CAS  Google Scholar 

Y. Hu, L. Kong, W. Li, L. Sun, C. Peng, M. Qin, Z. Zhao, Y. Li, and W. Feng, Fluorinated microporous carbon spheres for Li/CFx batteries with high volumetric energy density. Compos. Commun. 40, 101607 (2023).

Article  Google Scholar 

Y. Ahmad, K. Guérin, M. Dubois, W. Zhang, and A. Hamwi, Enhanced performances in primary lithium batteries of fluorinated carbon nanofibers through static fluorination. Electrochim. Acta 114, 142 (2013).

Article  CAS  Google Scholar 

D. Leanza, C.A.F. Vaz, P. Novák, and M. El Kazzi, Instability of PVDF binder in the LiFePO4 versus Li4Ti5O12 Li-ion battery cell. Helv. Chim. Acta 104, e2000183 (2021).

Article  CAS  Google Scholar 

Q. Li, W. Xue, X. Sun, X. Yu, H. Li, and L. Chen, Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries. Energy Storage Mater. 38, 482 (2021).

Article  Google Scholar 

S. Zhang, L. Kong, Y. Li, C. Peng, and W. Feng, Fundamentals of Li/CFx battery design and application. Energy Environ. Sci. 16, 1907 (2023).

Article  Google Scholar 

W. Feng, Status and development trends for fluorinated carbon in China. New Carbon Mater. 38, 130 (2023).

Article  CAS  Google Scholar 

S.-W. Kim, D.-H. Seo, H. Gwon, J. Kim, and K. Kang, Fabrication of FeF3 nanoflowers on CNT branches and their application to high power lithium rechargeable batteries. Adv. Mater. 22, 5260 (2010).

Article  CAS  PubMed  Google Scholar 

W. Liu, S. Ma, B. Wan, Y. Li, R. Guo, C. Wu, S. Ma, H. Pei, and J. Xie, Carbon fluorides for rechargeable batteries. Appl. Mater. Today. Today 33, 101883 (2023).

Article  Google Scholar 

W. Liu, H. Li, J.-Y. Xie, and Z.-W. Fu, Rechargeable room-temperature CFx-sodium battery. ACS Appl. Mater. Interfaces 6, 2209 (2014).

Article  CAS  PubMed  Google Scholar 

Y. Shao, H. Yue, R. Qiao, J. Hu, G. Zhong, S. Wu, M.J. McDonald, Z. Gong, Z. Zhu, W. Yang, and Y. Yang, Synthesis and reaction mechanism of novel fluorinated carbon fiber as a high-voltage cathode material for rechargeable Na batteries. Chem. Mater. 28, 1026 (2016).

Article  CAS  Google Scholar 

W. Liu, Y. Li, B.-X. Zhan, B. Shi, R. Guo, H.-J. Pei, J.-Y. Xie, and Z.-W. Fu, Amorphous, highly disordered carbon fluorides as a novel cathode for sodium secondary batteries. J. Phys. Chem. C 120, 25203 (2016).

Article  CAS  Google Scholar 

W. Liu, B.-X. Zhan, B. Shi, Y. Li, R. Guo, H.-J. Pei, and J.-Y. Xie, Sandwich–like structure of carbon fluoride/graphene oxide/polyacrylonitrile cathode for lithium and sodium batteries. ChemElectroChem 4, 436 (2017).

Article  CAS  Google Scholar 

K. Chayambuka, G. Mulder, D.L. Danilov, and P.H.L. Notten, Sodium-Ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8, 1800079 (2018).

Article  Google Scholar 

W. Liu, Y. Wang, Y. Li, B. Shi, P. Huang, R. Guo, H. Pei, Y. Zheng, J. Lu, and J. Xie, Long-life sodium/carbon fluoride batteries with flexible, binder-free fluorinated mesocarbon microbead film electrodes. Chem. Commun. 54, 2341 (2018).

Article  CAS  Google Scholar 

J. Xu, H. Liang, J. Cai, J. Wang, J. Wu, S. Li, and Z. Yang, Construction of ZnSe protective layer on zinc oxide for ultra-stable cycling of zinc-nickel batteries at high rates. Chem. Eng. Sci. 281, 119222 (2023).

Article  CAS  Google Scholar 

J. Zheng, M. Gu, J. Xiao, B.J. Polzin, P. Yan, X. Chen, C. Wang, and J.-G. Zhang, Functioning mechanism of AlF3 coating on the Li- and Mn-Rich cathode materials. Chem. Mater. 26, 6320 (2014).

Article  CAS  Google Scholar 

Y. Li, Y. Chen, W. Feng, F. Ding, and X. Liu, The improved discharge performance of Li/CFx batteries by using multi-walled carbon nanotubes as conductive additive. J. Power. Sour. 196, 2246 (2011).

Article  CAS  Google Scholar 

A. Lewandowski and P. Jakobczyk, Kinetics of Na|CFxand Li|CFxsystems. J. Solid State Electrochem. 20, 3367 (2016).

Article  CAS  Google Scholar 

Y. Jiang, Z. Yang, W. Li, L. Zeng, F. Pan, M. Wang, X. Wei, G. Hu, L. Gu, and Y. Yu, Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 5, 1402104 (2015).

Article  Google Scholar 

B. Sayahpour, H. Hirsh, S. Bai, N.B. Schorr, T.N. Lambert, M. Mayer, W. Bao, D. Cheng, M. Zhang, K. Leung, K.L. Harrison, W. Li, and Y.S. Meng, Revisiting discharge mechanism of CFx as a high energy density cathode material for lithium primary battery. Adv. Energy Mater. 12, 2103196 (2022).

Article  CAS  Google Scholar 

W. Liu, Z. Shadike, Z.-C. Liu, W.-Y. Liu, J.-Y. Xie, and Z.-W. Fu, Enhanced electrochemical activity of rechargeable carbon fluorides–sodium battery with catalysts. Carbon 93, 523 (2015).

Article  CAS  Google Scholar 

J. Meng, Z. Xiao, L. Zhu, X. Zhang, X. Hong, Y. Jia, F. Liu, and Q. Pang, Fluorinated electrode materials for high-energy batteries. Matter 6, 1685 (2023).

Article  CAS  Google Scholar 

Y.-Y. Li, C. Liu, L. Chen, X.-Z. Wu, P.-F. Zhou, X.-Y. Shen, and J. Zhou, Multi-layered fluorinated graphene cathode materials for lithium and sodium primary batteries. Rare Met. 42, 940 (2023).

Article  CAS  Google Scholar 

R. Cao, W. Fan, and C. Li, In situ carbon-coated NCM622 through CFx for lithium-ion batteries with high cycling stability. J. Electrochem. Soc. 166, A3348 (2019).

Article  CAS  Google Scholar 

Z. Zhao, Y. Zou, P. Liu, Z. Lai, L. Wen, and Y. Jin, EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms. Electrochim. Acta 418, 140350 (2022).

Article  CAS  Google Scholar 

R. Dong, T. Zhang, J. Liu, H. Li, D. Hu, X. Liu, and Q. Xu, Mechanistic insight into polypyrrole coating on V2O5 cathode for aqueous zinc-ion battery. ChemElectroChem 9, e202101441 (2022).

Article  CAS  Google Scholar 

P. Liu, H. Yi, S. Zheng, Z. Li, K. Zhu, Z. Sun, T. Jin, and L. Jiao, Regulating deposition behavior of sodium ions for dendrite-free sodium-metal anode. Adv. Energy Mater. 11, 2101976 (2021).

Article  CAS  Google Scholar 

A. Marjaoui, M. Zanouni, A. El Kasmi, M. Jbilou, and M. Diani, Na adsorption on bismuthene monolayer for battery applications: a first-principles study. FlatChem 27, 100251 (2021).

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif