S. Ahmad, S. Ali, I. Ullah, M.S. Zobaer, A. Albakri, and T. Muhammad, Synthesis and characterization of manganese ferrite from low grade manganese ore through solid state reaction route. Sci. Rep. 11, 1 (2021).
Z. Zhang, G. Yao, X. Zhang, J. Ma, and H. Lin, Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceram. Int. 41, 4523 (2015).
L. Enayati Ahangar, K. Movassaghi, and F. Yaghoobi, The pH role in nanotechnology electrochemistry and nano-drug delivery. Iran. J. Chem. Chem. Eng. 41, 2175 (2022).
R. Veerasamy, T.Z. Xin, S. Gunasagaran, T.F.W. Xiang, E.F.C. Yang, N. Jeyakumar, and S.A. Dhanaraj, Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 15, 113 (2011).
N. Liu, P. Du, P. Zhou, R.G. Tanguturi, Y. Qi, T. Zhang, and C. Zhuang, Annealing temperature effects on the cation distribution in CoFe2O4 nanofibers. Appl. Surf. Sci. 532, 3 (2020).
T. Ajeesha, A.A.M. George, A. Manikandan, J.A. Mary, Y. Slimani, M.A. Almessiere, and A. Baykal, Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Phys. B Condens. Matter. 606, 412660 (2021).
B. Rabi, M. Ounacer, L. Boudad, A. Essoumhi, M. Sajieddine, M. Taibi, A. Liba, and A. Razouk, Structural, optical and dielectric properties of nickel zinc spinel ferrites synthesized by co-precipitation method. J. Mater. Sci. Mater. Electron. 32, 932 (2021).
R. Sagayaraj, S. Aravazhi, and G. Chandrasekaran, Microstructure and magnetic properties of Cu0.5Co0.3Mo0.2Fe2O4 ferrite nanoparticles synthesized by coprecipitation method. Appl. Phys. A Mater. Sci. Process. 127, 1 (2021).
Muniba, M. Khalid, A.D. Chandio, M.S. Akhtar, J.K. Khan, G. Mustafa, N.U. Channa, Z.A. Gilani, and H.N.U.H.K. Asghar, Aluminum substitution in Ni-Co based spinel ferrite nanoparticles by Sol–Gel auto-combustion method, J. Electron. Mater. 50, 3302 (2021).
L.S. Ferreira, T.R. Silva, V.D. Silva, R.A. Raimundo, T.A. Simões, F.J.A. Loureiro, D.P. Fagg, M.A. Morales, and D.A. Macedo, Spinel ferrite MFe2O4 (M = Ni Co, or Cu) nanoparticles prepared by a proteic sol-gel route for oxygen evolution reaction. Adv. Powder Technol. 33, 103391 (2022).
A. Hakeem, T. Alshahrani, G. Muhammad, M.H. Alhossainy, A. Laref, A.R. Khan, I. Ali, H.M. Tahir Farid, T. Ghrib, S.R. Ejaz, and R.Y. Khosa, Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. J. Mater. Res. Technol. 11, 158 (2021).
A. Manohar, V. Vijayakanth, and R. Hong, Solvothermal reflux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J. Mater. Sci. Mater. Electron. 31, 799 (2020).
J. Kurian, B.B. Lahiri, M.J. Mathew, and J. Philip, High magnetic fluid hyperthermia efficiency in copper ferrite nanoparticles prepared by solvothermal and hydrothermal methods. J. Magn. Magn. Mater. 538, 168233 (2021).
A. Manohar, C. Krishnamoorthi, C. Pavithra, and N. Thota, Magnetic hyperthermia and photocatalytic properties of MnFe2O4 nanoparticles synthesized by solvothermal reflux method. J. Supercond. Nov. Magn. 34, 251 (2021).
H.M. Noor ul Huda Khan Asghar, M. Khalid, Z.A. Gilani, M.S. Shifa, A. Parveen, M.S. Ahmed, J.K. Khan, M. Afzal, and F.A. Sheikh, Structural and magnetic properties of Co–Cd–Zn spinel ferrite nanoparticles synthesized through micro-emulsion method. Opt. Quantum Electron. 53, 1 (2021).
M.A. Yousuf, S. Jabeen, M.N. Shahi, M.A. Khan, I. Shakir, and M.F. Warsi, Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Results Phys. 16, 102973 (2020).
S.M. El-Sheikh, F.A. Harraz, and M.M. Hessien, Magnetic behavior of cobalt ferrite nanowires prepared by template-assisted technique. Mater. Chem. Phys. 123, 254 (2010).
N. Dong, F. He, J. Xin, Q. Wang, Z. Lei, and B. Su, Preparation of CoFe2O4 magnetic fiber nanomaterial via a template-assisted solvothermal method. Mater. Lett. 141, 238 (2015).
F. Alahmari, Y. Slimani, M. Almessiere, M. Sertkol, A. Manikandan, and A. Baykal, Electrospinning synthesis of Cd-substituted Ni–Co spinel ferrite nanofibers: an investigation into their structural and magnetic features. Appl. Phys. A Mater. Sci. Process. 127, 1 (2021).
F. Alahmari, F.A. Khan, H. Sozeri, M. Sertkol, and M. Jaremko, Electrospun Cu-Co ferrite nanofibers: synthesis, structure, optical and magnetic properties, and anti-cancer activity. RSC Adv. 14, 7540 (2024).
CAS PubMed PubMed Central Google Scholar
S.R. Patade, D.D. Andhare, M.V. Khedkar, S.A. Jadhav, and K.M. Jadhav, Synthesis and characterizations of magnetically inductive Mn–Zn spinel ferrite nanoparticles for hyperthermia applications. J. Mater. Sci. Mater. Electron. 32, 13685 (2021).
A.I. Tovstolytkin, M.M. Kulyk, V.M. Kalita, S.M. Ryabchenko, V.O. Zamorskyi, O.P. Fedorchuk, S.O. Solopan, and A.G. Belous, Nickel-zinc spinel nanoferrites: Magnetic characterization and prospects of the use in self-controlled magnetic hyperthermia. J. Magn. Magn. Mater. 473, 422 (2019).
X. Yu, R. Yang, C. Wu, B. Liu, and W. Zhang, The heating efficiency of magnetic nanoparticles under an alternating magnetic field. Sci. Rep. 12, 1 (2022).
S.M. Chavan, M.K. Babrekar, S.S. More, and K.M. Jadhav, Structural and optical properties of nanocrystalline Ni-Zn ferrite thin films. J. Alloys Compd. 507, 21 (2010).
J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, and S.N. Stitzer, Ferrite devices and materials. IEEE Trans. Microw. Theory Tech. 50, 721 (2002).
V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, and C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035 (2009).
Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, and G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 60, 3548 (2006).
N.J. Greybush, V. Pacheco-Penã, N. Engheta, C.B. Murray, and C.R. Kagan, Plasmonic optical and chiroptical response of self-assembled Au nanorod equilateral trimers. ACS Nano 13, 1617 (2019).
Y. Wu, P. Xie, Q. Ding, Y. Li, L. Yue, H. Zhang, and W. Wang, Magnetic plasmons in plasmonic nanostructures: an overview. J. Appl. Phys. 133, 030902 (2023).
M. Saravanan, T.C. Sabari Girisun, and G. Vinitha, Third-order nonlinear optical properties and power limiting behavior of magnesium ferrite under CW laser (532 nm, 50 mW) excitation. J. Mater. Sci. 51, 3289 (2016).
A.P. Reena Mary, C.S. Suchand Sandeep, T.N. Narayanan, R. Philip, P. Moloney, P.M. Ajayan, and M.R. Anantharaman, Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles. Nanotechnology. 22, 375702 (2011).
J.J. Thomas, S. Krishnan, K. Sridharan, R. Philip, and N. Kalarikkal, A comparative study on the optical limiting properties of different nano spinel ferrites with Z-scan technique. Mater. Res. Bull. 47, 1855 (2012).
M. Nadafan, M. Parishani, Z. Dehghani, J.Z. Anvari, and R. Malekfar, Third-order nonlinear optical properties of NiFe2O4 nanoparticles by Z-scan technique. Optik (Stuttg). 144, 672 (2017).
M. Penchal Reddy, W. Madhuri, K. Sadhana, I.G. Kim, K.N. Hui, K.S. Hui, K.V. Siva Kumar, and R. Ramakrishna Reddy, Microwave sintering of nickel ferrite nanoparticles processed via sol-gel method. J. Sol-Gel Sci. Technol. 70, 400 (2014).
S. Bajaj, P. Patil, G.N. Kakade, S.D. Tapsale, K.M. Jadhav, and S. Shinde, Magnetic properties of nickel ferrite magnetic nanoparticles prepared via glycine assisted sol-gel auto combustion route. J. Phys. Conf. Ser. 1644, 012022 (2020).
D. Asmi, I.M. Low, Manufacture of graded ceramic matrix composites using infiltration techniques. (Woodhead Publishing Limited, 2014). https://doi.org/10.1533/9780857098825.1.109
H. Khedri, and A. Gholizadeh, Experimental comparison of structural, magnetic and elastic properties of M0.3Cu0.2Zn0.5Fe2O4 (M = Cu, Mn, Fe, Co, Ni, Mg) nanoparticles. Appl. Phys. A Mater. Sci. Process. 125, 1 (2019).
S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J.P. Borah, and L. Kumar, Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J. Phys. Chem. Solids 151, 109928 (2021).
B. Antic, A. Kremenović, A.S. Nikolic, and M. Stoiljkovic, Cation distribution and size-strain microstructure analysis in ultrafine Zn-Mn ferrites obtained from acetylacetonato complexes. J. Phys. Chem. B 108, 12646 (2004).
S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, and A. Sumaila, Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 045013 (2019).
C. Wang and S.H. Chen, Factors influencing particle agglomeration during solid-state sintering. Acta Mech. Sin. Xuebao. 28, 711 (2012).
S. Hasan and B. Azhdar, Synthesis of nickel-zinc ferrite nanoparticles by the sol-gel auto-combustion method: study of crystal structural, cation distribution, and magnetic properties. Adv. Condens. Matter Phys. 2022, 4603855 (2022).
Y. Liu, Y. Song, Y. You, X. Fu, J. Wen, and X. Zheng, NiFe2O4/g-C3N4 heterojunction composite with enhanced visible-light photocatalytic activity. J. Saudi Chem. Soc. 22, 439 (2018).
A.B. Nawale, N.S. Kanhe, S.A. Raut, S.V. Bhoraskar, A.K. Das, and V.L. Mathe, Investigation of structural, optical and magnetic properties of thermal plasma synthesized Ni-Co spinel ferrite nanoparticles. Ceram. Int. 43, 6637 (2017).
J.L. Ortiz-Quiñonez, U. Pal, and M.S. Villanueva, Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co-Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega 3, 14986 (2018).
PubMed PubMed Central Google Scholar
M.A. Almessiere, Y. Slimani, U. Kurtan, S. Guner, M. Sertkol, S.E. Shirsath, S. Akhtar, A. Baykal, and I. Ercan, Structural, magnetic, optical properties and cation distribution of nanosized Co0.7Zn0.3TmxFe2−xO4 (0.0 ≤ x ≤ 0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrason. Sonochem. 58, 104638 (2019).
留言 (0)