Investigation of the Structural, Elemental, and Magnetic Properties and Intensity-Dependent Third-Order Nonlinearity of Nickel Ferrite for Hyperthermia and Nonlinear Optical Application

S. Ahmad, S. Ali, I. Ullah, M.S. Zobaer, A. Albakri, and T. Muhammad, Synthesis and characterization of manganese ferrite from low grade manganese ore through solid state reaction route. Sci. Rep. 11, 1 (2021).

Google Scholar 

Z. Zhang, G. Yao, X. Zhang, J. Ma, and H. Lin, Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceram. Int. 41, 4523 (2015).

CAS  Google Scholar 

L. Enayati Ahangar, K. Movassaghi, and F. Yaghoobi, The pH role in nanotechnology electrochemistry and nano-drug delivery. Iran. J. Chem. Chem. Eng. 41, 2175 (2022).

CAS  Google Scholar 

R. Veerasamy, T.Z. Xin, S. Gunasagaran, T.F.W. Xiang, E.F.C. Yang, N. Jeyakumar, and S.A. Dhanaraj, Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 15, 113 (2011).

CAS  Google Scholar 

N. Liu, P. Du, P. Zhou, R.G. Tanguturi, Y. Qi, T. Zhang, and C. Zhuang, Annealing temperature effects on the cation distribution in CoFe2O4 nanofibers. Appl. Surf. Sci. 532, 3 (2020).

Google Scholar 

T. Ajeesha, A.A.M. George, A. Manikandan, J.A. Mary, Y. Slimani, M.A. Almessiere, and A. Baykal, Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Phys. B Condens. Matter. 606, 412660 (2021).

CAS  Google Scholar 

B. Rabi, M. Ounacer, L. Boudad, A. Essoumhi, M. Sajieddine, M. Taibi, A. Liba, and A. Razouk, Structural, optical and dielectric properties of nickel zinc spinel ferrites synthesized by co-precipitation method. J. Mater. Sci. Mater. Electron. 32, 932 (2021).

CAS  Google Scholar 

R. Sagayaraj, S. Aravazhi, and G. Chandrasekaran, Microstructure and magnetic properties of Cu0.5Co0.3Mo0.2Fe2O4 ferrite nanoparticles synthesized by coprecipitation method. Appl. Phys. A Mater. Sci. Process. 127, 1 (2021).

Google Scholar 

Muniba, M. Khalid, A.D. Chandio, M.S. Akhtar, J.K. Khan, G. Mustafa, N.U. Channa, Z.A. Gilani, and H.N.U.H.K. Asghar, Aluminum substitution in Ni-Co based spinel ferrite nanoparticles by Sol–Gel auto-combustion method, J. Electron. Mater. 50, 3302 (2021).

L.S. Ferreira, T.R. Silva, V.D. Silva, R.A. Raimundo, T.A. Simões, F.J.A. Loureiro, D.P. Fagg, M.A. Morales, and D.A. Macedo, Spinel ferrite MFe2O4 (M = Ni Co, or Cu) nanoparticles prepared by a proteic sol-gel route for oxygen evolution reaction. Adv. Powder Technol. 33, 103391 (2022).

CAS  Google Scholar 

A. Hakeem, T. Alshahrani, G. Muhammad, M.H. Alhossainy, A. Laref, A.R. Khan, I. Ali, H.M. Tahir Farid, T. Ghrib, S.R. Ejaz, and R.Y. Khosa, Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. J. Mater. Res. Technol. 11, 158 (2021).

CAS  Google Scholar 

A. Manohar, V. Vijayakanth, and R. Hong, Solvothermal reflux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J. Mater. Sci. Mater. Electron. 31, 799 (2020).

CAS  Google Scholar 

J. Kurian, B.B. Lahiri, M.J. Mathew, and J. Philip, High magnetic fluid hyperthermia efficiency in copper ferrite nanoparticles prepared by solvothermal and hydrothermal methods. J. Magn. Magn. Mater. 538, 168233 (2021).

CAS  Google Scholar 

A. Manohar, C. Krishnamoorthi, C. Pavithra, and N. Thota, Magnetic hyperthermia and photocatalytic properties of MnFe2O4 nanoparticles synthesized by solvothermal reflux method. J. Supercond. Nov. Magn. 34, 251 (2021).

CAS  Google Scholar 

H.M. Noor ul Huda Khan Asghar, M. Khalid, Z.A. Gilani, M.S. Shifa, A. Parveen, M.S. Ahmed, J.K. Khan, M. Afzal, and F.A. Sheikh, Structural and magnetic properties of Co–Cd–Zn spinel ferrite nanoparticles synthesized through micro-emulsion method. Opt. Quantum Electron. 53, 1 (2021).

Google Scholar 

M.A. Yousuf, S. Jabeen, M.N. Shahi, M.A. Khan, I. Shakir, and M.F. Warsi, Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Results Phys. 16, 102973 (2020).

Google Scholar 

S.M. El-Sheikh, F.A. Harraz, and M.M. Hessien, Magnetic behavior of cobalt ferrite nanowires prepared by template-assisted technique. Mater. Chem. Phys. 123, 254 (2010).

CAS  Google Scholar 

N. Dong, F. He, J. Xin, Q. Wang, Z. Lei, and B. Su, Preparation of CoFe2O4 magnetic fiber nanomaterial via a template-assisted solvothermal method. Mater. Lett. 141, 238 (2015).

CAS  Google Scholar 

F. Alahmari, Y. Slimani, M. Almessiere, M. Sertkol, A. Manikandan, and A. Baykal, Electrospinning synthesis of Cd-substituted Ni–Co spinel ferrite nanofibers: an investigation into their structural and magnetic features. Appl. Phys. A Mater. Sci. Process. 127, 1 (2021).

Google Scholar 

F. Alahmari, F.A. Khan, H. Sozeri, M. Sertkol, and M. Jaremko, Electrospun Cu-Co ferrite nanofibers: synthesis, structure, optical and magnetic properties, and anti-cancer activity. RSC Adv. 14, 7540 (2024).

CAS  PubMed  PubMed Central  Google Scholar 

S.R. Patade, D.D. Andhare, M.V. Khedkar, S.A. Jadhav, and K.M. Jadhav, Synthesis and characterizations of magnetically inductive Mn–Zn spinel ferrite nanoparticles for hyperthermia applications. J. Mater. Sci. Mater. Electron. 32, 13685 (2021).

CAS  Google Scholar 

A.I. Tovstolytkin, M.M. Kulyk, V.M. Kalita, S.M. Ryabchenko, V.O. Zamorskyi, O.P. Fedorchuk, S.O. Solopan, and A.G. Belous, Nickel-zinc spinel nanoferrites: Magnetic characterization and prospects of the use in self-controlled magnetic hyperthermia. J. Magn. Magn. Mater. 473, 422 (2019).

CAS  Google Scholar 

X. Yu, R. Yang, C. Wu, B. Liu, and W. Zhang, The heating efficiency of magnetic nanoparticles under an alternating magnetic field. Sci. Rep. 12, 1 (2022).

CAS  Google Scholar 

S.M. Chavan, M.K. Babrekar, S.S. More, and K.M. Jadhav, Structural and optical properties of nanocrystalline Ni-Zn ferrite thin films. J. Alloys Compd. 507, 21 (2010).

CAS  Google Scholar 

J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, and S.N. Stitzer, Ferrite devices and materials. IEEE Trans. Microw. Theory Tech. 50, 721 (2002).

CAS  Google Scholar 

V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, and C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035 (2009).

CAS  Google Scholar 

Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, and G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 60, 3548 (2006).

CAS  Google Scholar 

N.J. Greybush, V. Pacheco-Penã, N. Engheta, C.B. Murray, and C.R. Kagan, Plasmonic optical and chiroptical response of self-assembled Au nanorod equilateral trimers. ACS Nano 13, 1617 (2019).

CAS  PubMed  Google Scholar 

Y. Wu, P. Xie, Q. Ding, Y. Li, L. Yue, H. Zhang, and W. Wang, Magnetic plasmons in plasmonic nanostructures: an overview. J. Appl. Phys. 133, 030902 (2023).

CAS  Google Scholar 

M. Saravanan, T.C. Sabari Girisun, and G. Vinitha, Third-order nonlinear optical properties and power limiting behavior of magnesium ferrite under CW laser (532 nm, 50 mW) excitation. J. Mater. Sci. 51, 3289 (2016).

CAS  Google Scholar 

A.P. Reena Mary, C.S. Suchand Sandeep, T.N. Narayanan, R. Philip, P. Moloney, P.M. Ajayan, and M.R. Anantharaman, Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles. Nanotechnology. 22, 375702 (2011).

CAS  PubMed  Google Scholar 

J.J. Thomas, S. Krishnan, K. Sridharan, R. Philip, and N. Kalarikkal, A comparative study on the optical limiting properties of different nano spinel ferrites with Z-scan technique. Mater. Res. Bull. 47, 1855 (2012).

CAS  Google Scholar 

M. Nadafan, M. Parishani, Z. Dehghani, J.Z. Anvari, and R. Malekfar, Third-order nonlinear optical properties of NiFe2O4 nanoparticles by Z-scan technique. Optik (Stuttg). 144, 672 (2017).

CAS  Google Scholar 

M. Penchal Reddy, W. Madhuri, K. Sadhana, I.G. Kim, K.N. Hui, K.S. Hui, K.V. Siva Kumar, and R. Ramakrishna Reddy, Microwave sintering of nickel ferrite nanoparticles processed via sol-gel method. J. Sol-Gel Sci. Technol. 70, 400 (2014).

CAS  Google Scholar 

S. Bajaj, P. Patil, G.N. Kakade, S.D. Tapsale, K.M. Jadhav, and S. Shinde, Magnetic properties of nickel ferrite magnetic nanoparticles prepared via glycine assisted sol-gel auto combustion route. J. Phys. Conf. Ser. 1644, 012022 (2020).

CAS  Google Scholar 

D. Asmi, I.M. Low, Manufacture of graded ceramic matrix composites using infiltration techniques. (Woodhead Publishing Limited, 2014). https://doi.org/10.1533/9780857098825.1.109

H. Khedri, and A. Gholizadeh, Experimental comparison of structural, magnetic and elastic properties of M0.3Cu0.2Zn0.5Fe2O4 (M = Cu, Mn, Fe, Co, Ni, Mg) nanoparticles. Appl. Phys. A Mater. Sci. Process. 125, 1 (2019).

CAS  Google Scholar 

S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J.P. Borah, and L. Kumar, Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J. Phys. Chem. Solids 151, 109928 (2021).

CAS  Google Scholar 

B. Antic, A. Kremenović, A.S. Nikolic, and M. Stoiljkovic, Cation distribution and size-strain microstructure analysis in ultrafine Zn-Mn ferrites obtained from acetylacetonato complexes. J. Phys. Chem. B 108, 12646 (2004).

CAS  Google Scholar 

S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, and A. Sumaila, Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 045013 (2019).

Google Scholar 

C. Wang and S.H. Chen, Factors influencing particle agglomeration during solid-state sintering. Acta Mech. Sin. Xuebao. 28, 711 (2012).

CAS  Google Scholar 

S. Hasan and B. Azhdar, Synthesis of nickel-zinc ferrite nanoparticles by the sol-gel auto-combustion method: study of crystal structural, cation distribution, and magnetic properties. Adv. Condens. Matter Phys. 2022, 4603855 (2022).

Google Scholar 

Y. Liu, Y. Song, Y. You, X. Fu, J. Wen, and X. Zheng, NiFe2O4/g-C3N4 heterojunction composite with enhanced visible-light photocatalytic activity. J. Saudi Chem. Soc. 22, 439 (2018).

CAS  Google Scholar 

A.B. Nawale, N.S. Kanhe, S.A. Raut, S.V. Bhoraskar, A.K. Das, and V.L. Mathe, Investigation of structural, optical and magnetic properties of thermal plasma synthesized Ni-Co spinel ferrite nanoparticles. Ceram. Int. 43, 6637 (2017).

CAS  Google Scholar 

J.L. Ortiz-Quiñonez, U. Pal, and M.S. Villanueva, Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co-Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega 3, 14986 (2018).

PubMed  PubMed Central  Google Scholar 

M.A. Almessiere, Y. Slimani, U. Kurtan, S. Guner, M. Sertkol, S.E. Shirsath, S. Akhtar, A. Baykal, and I. Ercan, Structural, magnetic, optical properties and cation distribution of nanosized Co0.7Zn0.3TmxFe2−xO4 (0.0 ≤ x ≤ 0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrason. Sonochem. 58, 104638 (2019).

CAS  PubMed 

留言 (0)

沒有登入
gif