Alden RG, Parson WW, Chu ZT, Warshel A (1995) Calculations of electrostatic energies in photosynthetic reaction centers. J Am Chem Soc 117:12284–12298. https://doi.org/10.1021/ja00154a031
Alden RG, Parson WW, Chu ZT, Warshel A (1996) Orientation of the OH dipole of tyrosine (M)210 and its effect on electrostatic energies in photosynthetic bacterial reaction centers. J Phys Chem 100:16761–16770. https://doi.org/10.1021/jp961271s
Arlt T, Schmidt S, Kaiser W, Lauterwasser C, Meyer M, Scheer H, Zinth W (1993) The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis. Proc Natl Acad Sci USA 90:11757–11761. https://doi.org/10.1073/pnas.90.24.11757
Article CAS PubMed PubMed Central Google Scholar
Becker M, Nagarajan V, Middendorf D, Parson WW, Martin JE, Blankenship RE (1991) Temperature dependence of the initial electron-transfer kinetics in photosynthetic reaction centers of Chloroflexus aurantiacus. Biochim Biophys Acta 1057:299–312. https://doi.org/10.1016/S0005-2728(05)80141-0
Bixon M, Jortner J (1999) Electron transfer– from isolated molecules to biomolecules. Adv Chem Phys 106:35–202. https://doi.org/10.1002/9780470141656.ch3
Bixon M, Jortner J, Michel-Beyerle ME (1995) A kinetic analysis of the primary charge separation in bacterial photosynthesis. Energy gaps and static heterogeneity. Chem Phys 197:389–404. https://doi.org/10.1016/0301-0104(95)00168-N
Blankenship RE, Feick R, Bruce BD, Kirmaier C, Holten D, Fuller RC (1983) Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus. J Cell Biochem 22:251–261. https://doi.org/10.1002/jcb.240220407
Article CAS PubMed Google Scholar
Carter B, Boxer SG, Holten D, Kirmaier C (2009) Trapping the P+BL– initial intermediate state of charge separation in photosynthetic reaction centers from Rhodobacter capsulatus. Biochemistry 48:2571–2573. https://doi.org/10.1021/bi900282p
Article CAS PubMed Google Scholar
Clayton RK, Yamamoto T (1976) Photochemical quantum efficiency and absorption spectra of reaction centers from Rhodopseudomonas sphaeroides at low temperature. Photochem Photobiol 24:67–70. https://doi.org/10.1111/j.1751-1097.1976.tb06798.x
Fajer J, Brune DC, Davis MS, Forman A, Spaulding LD (1975) Primary charge separation in bacterial photosynthesis: oxidized chlorophylls and reduced pheophytin. Proc Nat Acad Sci USA 72:4956–4960. https://doi.org/10.1073/pnas.72.12.4956
Article CAS PubMed PubMed Central Google Scholar
Faries KM, Dylla NP, Hanson DK, Holten D, Laible PD, Kirmaier C (2017) Manipulating the energetics and rates of electron transfer in Rhodobacter capsulatus reaction centers with asymmetric pigment content. J Phys Chem B 121:6989–7004. https://doi.org/10.1021/acs.jpcb.7b01389
Article CAS PubMed Google Scholar
Faries KM, Hanson DK, Buhrmaster JC, Hippleheuser S, Tira GA, Wyllie RM, Kohout CE, Magdaong NCM, Holten D, Laible PD, Kirmaier C (2024) Two pathways to understanding electron transfer in reaction centers from photosynthetic bacteria: a comparison of Rhodobacter sphaeroides and Rhodobacter capsulatus mutants. Biochim Biophys Acta Bioenerg 1865:149047. https://doi.org/10.1016/j.bbabio.2024.149047
Article CAS PubMed Google Scholar
Feick RG, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23:3693–3700. https://doi.org/10.1021/bi00311a019
Feick R, Shiozawa JA, Ertlmaier A (1995) Biochemical and spectroscopic properties of the reaction center of the green filamentous bacterium Chloroflexus aurantiacus. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic Bacteria. Kluwer Academic, Dordrecht, pp 699–708
Fujita I, Davis MS, Fajer J (1978) Anion radicals of pheophytin and chlorophyll a: their role in the primary charge separations of plant photosynthesis. J Am Chem Soc 100:6280–6282. https://doi.org/10.1021/ja00487a079
Guo Z, Lin S, Xin Y, Wang H, Blankenship RE, Woodbury NW (2011) Comparing the temperature dependence of photosynthetic electron transfer in Chloroflexus aurantiacus and Rhodobacter sphaeroides reaction centers. J Phys Chem B 115:11230–11238. https://doi.org/10.1021/jp204239v
Article CAS PubMed Google Scholar
Holzwarth AR, Müller MG (1996) Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry 35:11820–11831. https://doi.org/10.1021/bi9607012
Article CAS PubMed Google Scholar
Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander J, Rögner M (2006) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103:6895–6900. https://doi.org/10.1073/pnas.0505371103
Article CAS PubMed PubMed Central Google Scholar
Ivancich A, Feick R, Ertlmaier A, Mattioli TA (1996) Structure and protein binding interactions of the primary donor of the Chloroflexus aurantiacus reaction center. Biochemistry 35:6126–6135. https://doi.org/10.1021/bi952772r
Article CAS PubMed Google Scholar
Kennis JTM, van Shkuropatov AYa IHM, Gast P, Hoff AJ, Shuvalov VA, Aartsma TJ (1997) Formation of a long-lived P+BA– state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature. Biochemistry 36:6231–16238. https://doi.org/10.1021/bi9712605
Kirmaier C, Blankenship RE, Holten D (1986) Formation and decay of radical-pair state P+I– in Chloroflexus aurantiacus reaction centers. Biochim Biophys Acta 850:275–285. https://doi.org/10.1016/0005-2728(86)90182-9
Laible PD, Hanson DK, Buhrmaster JC, Tira GA, Faries KM, Holten D, Kirmaier C (2020) Switching sides– reengineered primary charge separation in the bacterial photosynthetic reaction center. Proc Natl Acad Sci USA 117:865–871. https://doi.org/10.1073/pnas.1916119117
Article CAS PubMed Google Scholar
Magdaong NCM, Faries KM, Buhrmaster JC, Tira GA, Wyllie RM, Kohout CE, Hanson DK, Laible PD, Holten D, Kirmaier C (2022) High yield of B-side electron transfer at 77 K in the photosynthetic reaction center protein from Rhodobacter sphaeroides. J Phys Chem B 126:8940–8956. https://doi.org/10.1021/acs.jpcb.2c05905
Article CAS PubMed Google Scholar
Okamura MY, Isaacson RA, Feher G (1979) Spectroscopic and kinetic properties of the transient intermediate acceptor in reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 546:394–417. https://doi.org/10.1016/0005-2728(79)90076-8
Article CAS PubMed Google Scholar
Ovchinnikov YA, Abdulaev NG, Shmukler BE, Zargarov AA, Kutuzov MA, Telezhinskaya IN, Levina NB, Zolotarev AS (1988b) Photosynthetic reaction centre of Chloroflexus aurantiacus. Primary structure of M-subunit. FEBS Lett 232:364–368. https://doi.org/10.1016/0014-5793(88)80770-1
Ovchinnikov Yu A, Abdulaev NG, Zolotarev AS, Shmukler BE, Zargarov AA, Kutuzov MA, Telezhinskaya IN, Levina NB (1988a) Photosynthetic reaction centre of Chloroflexus aurantiacus I. primary structure of L-subunit. FEBS Lett 231:237–242. https://doi.org/10.1016/0014-5793(88)80739-7
Parson WW, Chub Z-T, Warshel A (1990) Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta 1017:251–272. https://doi.org/10.1016/0005-2728(90)90192-7
Article CAS PubMed Google Scholar
Pierson BK, Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-fl. Proc Natl Acad Sci USA 80:80–84. https://doi.org/10.1073/pnas.80.1.80
Article CAS PubMed PubMed Central Google Scholar
Saggu M, Carter B, Zhou X, Faries K, Cegelski L, Holten D, Boxer SG, Kirmaier C (2014) Putative hydrogen bond to tyrosine M208 in photosynthetic reaction centers from Rhodobacter capsulatus significantly slows primary charge separation. J Phys Chem B 118:6721–6732. https://doi.org/10.1021/jp503422c
留言 (0)