Fountzilas, E., Kurzrock, R., Vo, H. H., & Tsimberidou, A. M. (2021). Wedding of molecular alterations and immune checkpoint blockade: genomics as a matchmaker. JNCI: Journal of the National Cancer Institute, 113(12), 1634–1647. https://doi.org/10.1093/JNCI/DJAB067
Article PubMed PubMed Central Google Scholar
Adashek, J. J., Kato, S., Nishizaki, D., Miyashita, H., De, P., Lee, S., … Kurzrock, R. (2023). LAG-3 transcriptomic expression patterns across malignancies: Implications for precision immunotherapeutics. Cancer Medicine, 12(12), 13155–13166. https://doi.org/10.1002/CAM4.6000
Miyashita, H., Kurzrock, R., Bevins, N. J., Thangathurai, K., Lee, S., Pabla, S., … Kato, S. (2023). T-cell priming transcriptomic markers: Implications of immunome heterogeneity for precision immunotherapy. NPJ Genomic Medicine, 8(1). https://doi.org/10.1038/S41525-023-00359-8
Fujiwara, Y., Kato, S., Nesline, M. K., Conroy, J. M., DePietro, P., Pabla, S., & Kurzrock, R. (2022). Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treatment Reviews, 110, 102461. https://doi.org/10.1016/J.CTRV.2022.102461
Article CAS PubMed Google Scholar
Müller, D. (2023). Targeting co-stimulatory receptors of the TNF superfamily for cancer immunotherapy. BioDrugs, 37(1), 21–33. https://doi.org/10.1007/S40259-022-00573-3/TABLES/4
Takahashi, H., Yoshimatsu, G., & Faustman, D. L. (2022). The roles of TNFR2 signaling in cancer cells and the tumor microenvironment and the potency of TNFR2 targeted therapy. Cells, 11(12), 1952. https://doi.org/10.3390/CELLS11121952
Article CAS PubMed PubMed Central Google Scholar
Alves Costa Silva, C., Facchinetti, F., Routy, B., & Derosa, L. (2020). New pathways in immune stimulation: Targeting OX40. ESMO Open, 5(1), e000573. https://doi.org/10.1136/ESMOOPEN-2019-000573
Article PubMed PubMed Central Google Scholar
Elgueta, R., Benson, M. J., De Vries, V. C., Wasiuk, A., Guo, Y., & Noelle, R. J. (2009). Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunological Reviews, 229(1), 152–172. https://doi.org/10.1111/J.1600-065X.2009.00782.X
Article CAS PubMed Google Scholar
Peter, M. E., Hadji, A., Murmann, A. E., Brockway, S., Putzbach, W., Pattanayak, A., & Ceppi, P. (2015). The role of CD95 and CD95 ligand in cancer. Cell Death and Differentiation, 22(4), 549–559. https://doi.org/10.1038/cdd.2015.3
Article CAS PubMed PubMed Central Google Scholar
Borst, J., Hendriks, J., & Xiao, Y. (2005). CD27 and CD70 in T cell and B cell activation. Current Opinion in Immunology, 17(3), 275–281. https://doi.org/10.1016/J.COI.2005.04.004
Article CAS PubMed Google Scholar
Kennedy, M. K., Willis, C. R., & Armitage, R. J. (2006). Deciphering CD30 ligand biology and its role in humoral immunity. Immunology, 118(2), 143. https://doi.org/10.1111/J.1365-2567.2006.02354.X
Article CAS PubMed PubMed Central Google Scholar
Kim, A. M. J., Nemeth, M. R., & Lim, S. O. (2022). 4–1BB: A promising target for cancer immunotherapy. Frontiers in Oncology, 12, 968360. https://doi.org/10.3389/FONC.2022.968360/PDF
Article PubMed PubMed Central Google Scholar
Wajant, H. (2019). Molecular mode of action of TRAIL receptor agonists-common principles and their translational exploitation. Cancers, 11(7), 954. https://doi.org/10.3390/CANCERS11070954
Article CAS PubMed PubMed Central Google Scholar
Burkly, L. C., Michaelson, J. S., & Zheng, T. S. (2011). TWEAK/Fn14 pathway: An immunological switch for shaping tissue responses. Immunological Reviews, 244(1), 99–114. https://doi.org/10.1111/J.1600-065X.2011.01054.X
Article CAS PubMed Google Scholar
Kampa, M., Notas, G., Stathopoulos, E. N., Tsapis, A., & Castanas, E. (2020). The TNFSF members APRIL and BAFF and their receptors TACI, BCMA, and BAFFR in oncology, with a special focus in breast cancer. Frontiers in Oncology, 10, 827. https://doi.org/10.3389/FONC.2020.00827/PDF
Article PubMed PubMed Central Google Scholar
Cai, G., & Freeman, G. J. (2009). The CD160, BTLA, LIGHT/HVEM pathway: A bidirectional switch regulating T-cell activation. Immunological Reviews, 229(1), 244–258. https://doi.org/10.1111/J.1600-065X.2009.00783.X
Article CAS PubMed Google Scholar
Valatas, V., Kolios, G., & Bamias, G. (2019). TL1A (TNFSF15) and DR3 (TNFRSF25): A co-stimulatory system of cytokines with diverse functions in gut mucosal immunity. Frontiers in Immunology, 10(22), 421466. https://doi.org/10.3389/FIMMU.2019.00583/BIBTEX
Clouthier, D. L., & Watts, T. H. (2014). Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine and Growth Factor Reviews, 25(2), 91–106. https://doi.org/10.1016/J.CYTOGFR.2013.12.003
Article CAS PubMed Google Scholar
Dostert, C., Grusdat, M., Letellier, E., & Brenner, D. (2019). The TNF family of ligands and receptors: Communication modules in the immune system and beyond. Physiological Reviews, 99(1), 115–160. https://doi.org/10.1152/PHYSREV.00045.2017/ASSET/IMAGES/LARGE/Z9J0041828770007.JPEG
Article CAS PubMed Google Scholar
So, T., & Ishii, N. (2019). The TNF-TNFR family of co-signal molecules. Advances in Experimental Medicine and Biology, 1189, 53–84. https://doi.org/10.1007/978-981-32-9717-3_3
Article CAS PubMed Google Scholar
Clement, M. V., & Stamenkovic, I. (1994). Fas and tumor necrosis factor receptor-mediated cell death: similarities and distinctions. The Journal of Experimental Medicine, 180(2), 557–567. https://doi.org/10.1084/JEM.180.2.557
Article CAS PubMed Google Scholar
Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N., & Williamson, B. (1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences, 72(9), 3666–3670. https://doi.org/10.1073/PNAS.72.9.3666
Balkwill, F. (2009). Tumour necrosis factor and cancer. Nature Reviews Cancer, 9(5), 361–371. https://doi.org/10.1038/NRC2628
Article CAS PubMed Google Scholar
Wajant, H., Pfizenmaier, K., & Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death and Differentiation, 10(1), 45–65. https://doi.org/10.1038/SJ.CDD.4401189
Article CAS PubMed Google Scholar
Wajant, H. (2015). Principles of antibody-mediated TNF receptor activation. Cell Death and Differentiation, 22(11), 1727–1741. https://doi.org/10.1038/cdd.2015.109
Article CAS PubMed PubMed Central Google Scholar
Vanamee, É. S., & Faustman, D. L. (2018). Structural principles of tumor necrosis factor superfamily signaling. Science Signaling, 11(511), eaao4910. https://doi.org/10.1126/SCISIGNAL.AAO4910
Shi, G., & Hu, Y. (2023). TNFR1 and TNFR2, which link NF-κB activation, drive lung cancer progression, cell dedifferentiation, and metastasis. Cancers, 15(17), 4299. https://doi.org/10.3390/CANCERS15174299
Article CAS PubMed PubMed Central Google Scholar
Kartikasari, A. E. R., Cassar, E., Razqan, M. A. M., Szydzik, C., Huertas, C. S., Mitchell, A., & Plebanski, M. (2022). Elevation of circulating TNF receptor 2 in cancer: A systematic meta-analysis for its potential as a diagnostic cancer biomarker. Frontiers in Immunology, 13, 918254. https://doi.org/10.3389/FIMMU.2022.918254/BIBTEX
Article CAS PubMed PubMed Central Google Scholar
Li, M., Zhang, X., Bai, X., & Liang, T. (2022). Targeting TNFR2: A novel breakthrough in the treatment of cancer. Frontiers in Oncology, 12, 862154. https://doi.org/10.3389/FONC.2022.862154/BIBTEX
留言 (0)