Sclafani, R. A., & Holzen, T. M. (2007). Cell cycle regulation of DNA replication. Annual Review of Genetics, 41, 237–280. https://doi.org/10.1146/annurev.genet.41.110306.130308
Article CAS PubMed PubMed Central Google Scholar
DePamphilis, M. L. (2016). Genome duplication: The heartbeat of developing organisms. Current Topics in Developmental Biology, 116, 201–229. https://doi.org/10.1016/bs.ctdb.2015.10.002
Article CAS PubMed PubMed Central Google Scholar
Gaillard, H., García-Muse, T., & Aguilera, A. (2015). Replication stress and cancer. Nature Reviews Cancer, 15, 276–289. https://doi.org/10.1038/nrc3916
Article CAS PubMed Google Scholar
Waterman, D. P., Haber, J. E., & Smolka, M. B. (2020). Checkpoint responses to DNA double-strand breaks. Annual Review of Biochemistry, 89, 103–133. https://doi.org/10.1146/annurev-biochem-011520-104722
Article CAS PubMed PubMed Central Google Scholar
Mughal, M. J., Chan, K. I., Mahadevappa, R., Wong, S. W., Wai, K. C., & Kwok, H. F. (2022). Over-Activation of Minichromosome Maintenance Protein 10 Promotes Genomic Instability in Early Stages of Breast Cancer. International Journal of Biological Sciences, 18, 3827–3844. https://doi.org/10.7150/ijbs.69344
Article CAS PubMed PubMed Central Google Scholar
Bell, S. P. (2017). Rethinking origin licensing. eLife, 6, e24052. https://doi.org/10.7554/eLife.24052
Article PubMed PubMed Central Google Scholar
Lewis, J. S., Gross, M. H., Sousa, J., Henrikus, S. S., Greiwe, J. F., Nans, A., Diffley, J. F. X., & Costa, A. (2022). Mechanism of replication origin melting nucleated by CMG helicase assembly. Nature, 606, 1007–1014. https://doi.org/10.1038/s41586-022-04829-4
Article CAS PubMed PubMed Central Google Scholar
Polasek-Sedlackova, H., Miller, T. C. R., Krejci, J., Rask, M.-B., & Lukas, J. (2022). Solving the MCM paradox by visualizing the scaffold of CMG helicase at active replisomes. Nature Communications, 13, 6090. https://doi.org/10.1038/s41467-022-33887-5
Article CAS PubMed PubMed Central Google Scholar
Wang, Y., Chen, H., Zhang, J., Cheng, A. S. L., Yu, J., To, K. F., & Kang, W. (2020). MCM family in gastrointestinal cancer and other malignancies: From functional characterization to clinical implication. Biochimica et Biophysica Acta - Reviews on Cancer, 1874, 188415. https://doi.org/10.1016/j.bbcan.2020.188415
Article CAS PubMed Google Scholar
Briu, L.-M., Maric, C., & Cadoret, J.-C. (2021). Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship. International Journal of Molecular Sciences, 22, 4764. https://doi.org/10.3390/ijms22094764
Article CAS PubMed PubMed Central Google Scholar
Warren, E. M., Huang, H., Fanning, E., Chazin, W. J., & Eichman, B. F. (2009). Physical Interactions between Mcm10, DNA, and DNA Polymerase α *. Journal of Biological Chemistry, 284, 24662–24672. https://doi.org/10.1074/jbc.M109.020438
Article CAS PubMed PubMed Central Google Scholar
Kanke, M., Kodama, Y., Takahashi, T. S., Nakagawa, T., & Masukata, H. (2012). Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO Journal, 31, 2182–2194. https://doi.org/10.1038/emboj.2012.68
Article CAS PubMed PubMed Central Google Scholar
Solomon, N. A., Wright, M. B., Chang, S., Buckley, A. M., Dumas, L. B., & Gaber, R. F. (1992). Genetic and molecular analysis of DNA43 and DNA52: Two new cell-cycle genes in Saccharomyces cerevisiae. Yeast Chichester Engl., 8, 273–289. https://doi.org/10.1002/yea.320080405
Merchant, A. M., Kawasaki, Y., Chen, Y., Lei, M., & Tye, B. K. (1997). A lesion in the DNA replication initiation factor Mcm10 induces pausing of elongation forks through chromosomal replication origins in Saccharomyces cerevisiae. Molecular and Cellular Biology, 17, 3261–3271.
Article CAS PubMed PubMed Central Google Scholar
Wohlschlegel, J. A., Dhar, S. K., Prokhorova, T. A., Dutta, A., & Walter, J. C. (2002). Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Molecular Cell, 9, 233–240. https://doi.org/10.1016/s1097-2765(02)00456-2
Article CAS PubMed Google Scholar
Gregan, J., Lindner, K., Brimage, L., Franklin, R., Namdar, M., Hart, E. A., Aves, S. J., & Kearsey, S. E. (2003). Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Molecular Biology of the Cell, 14, 3876–3887. https://doi.org/10.1091/mbc.e03-02-0090
Article CAS PubMed PubMed Central Google Scholar
Sawyer, S. L., Cheng, I. H., Chai, W., & Tye, B. K. (2004). Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae. Journal of Molecular Biology, 340, 195–202. https://doi.org/10.1016/j.jmb.2004.04.066
Article CAS PubMed Google Scholar
Heller, R. C., Kang, S., Lam, W. M., Chen, S., Chan, C. S., & Bell, S. P. (2011). Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell, 146, 80–91. https://doi.org/10.1016/j.cell.2011.06.012
Article CAS PubMed PubMed Central Google Scholar
Maine, G. T., Sinha, P., & Tye, B.-K. (1984). Mutants of s. cerevisiae defective in the maintenance of minichromosomes. Genetics, 106, 365–385. https://doi.org/10.1093/genetics/106.3.365
Article CAS PubMed PubMed Central Google Scholar
Izumi, M., Yanagi, K., Mizuno, T., Yokoi, M., Kawasaki, Y., Moon, K.-Y., Hurwitz, J., Yatagai, F., & Hanaoka, F. (2000). The human homolog of Saccharomyces cerevisiae Mcm10 interacts with replication factors and dissociates from nuclease-resistant nuclear structures in G2 phase. Nucleic Acids Research, 28, 4769–4777.
Article CAS PubMed PubMed Central Google Scholar
Homesley, L., Lei, M., Kawasaki, Y., Sawyer, S., Christensen, T., & Tye, B. K. (2000). Mcm10 and the MCM2–7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes & Development, 14, 913–926.
Fien, K., Cho, Y.-S., Lee, J.-K., Raychaudhuri, S., Tappin, I., & Hurwitz, J. (2004). Primer utilization by DNA polymerase alpha-primase is influenced by its interaction with Mcm10p. Journal of Biological Chemistry, 279, 16144–16153. https://doi.org/10.1074/jbc.M400142200
Article CAS PubMed Google Scholar
Das-Bradoo, S., Ricke, R. M., & Bielinsky, A.-K. (2006). Interaction between PCNA and Diubiquitinated Mcm10 Is Essential for Cell Growth in Budding Yeast. Molecular and Cellular Biology, 26, 4806–4817. https://doi.org/10.1128/MCB.02062-05
Article CAS PubMed PubMed Central Google Scholar
Fernández-Cid, A., Riera, A., Tognetti, S., Herrera, M. C., Samel, S., Evrin, C., Winkler, C., Gardenal, E., Uhle, S., & Speck, C. (2013). An ORC/Cdc6/MCM2-7 complex is formed in a Multistep reaction to serve as a platform for MCM double-hexamer assembly. Molecular Cell, 50, 577–588. https://doi.org/10.1016/j.molcel.2013.03.026
Article CAS PubMed Google Scholar
Izumi, M., Yatagai, F., & Hanaoka, F. (2001). Cell cycle-dependent proteolysis and phosphorylation of human Mcm10. Journal of Biological Chemistry, 276, 48526–48531. https://doi.org/10.1074/jbc.M107190200
留言 (0)