Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis

Arnold, M., Sierra, M. S., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2017). Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66(4), 683–691.

Article  PubMed  Google Scholar 

Xi, Y., & Xu, P. (2021). Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 14(10), 101174.

Article  PubMed  PubMed Central  Google Scholar 

Sinicrope, F. A. (2022). Increasing incidence of early-onset colorectal cancer. New England Journal of Medicine, 386(16), 1547–1558.

Article  CAS  PubMed  Google Scholar 

Flemer, B., Lynch, D. B., Brown, J. M., Jeffery, I. B., Ryan, F. J., Claesson, M. J., . . . O'Toole, P. W. (2017). Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 66(4), 633–643.

Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., . . . Nagarsheth, N. (2017). Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 170(3), 548-563. e516.

Morley-Bunker, A., Walker, L., Currie, M., Pearson, J., & Eglinton, T. (2016). Translating colorectal cancer genetics into clinically useful biomarkers. Colorectal Disease, 18(8), 749–762.

Article  CAS  PubMed  Google Scholar 

Pino, M. S., & Chung, D. C. (2010). The chromosomal instability pathway in colon cancer. Gastroenterology, 138(6), 2059–2072.

Article  CAS  PubMed  Google Scholar 

Nguyen, L. H., Goel, A., & Chung, D. C. (2020). Pathways of colorectal carcinogenesis. Gastroenterology, 158(2), 291–302.

Article  CAS  PubMed  Google Scholar 

Conlin, A., Smith, G., Carey, F. A., Wolf, C. R., & Steele, R. J. (2005). The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut, 54(9), 1283–1286.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemieux, E., Cagnol, S., Beaudry, K., Carrier, J., & Rivard, N. (2015). Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene, 34(38), 4914–4927.

Article  CAS  PubMed  Google Scholar 

Rennoll, S., & Yochum, G. (2015). Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer. World Journal of Biological Chemistry, 6(4), 290.

Article  PubMed  PubMed Central  Google Scholar 

Phipps, A. I., Limburg, P. J., Baron, J. A., Burnett-Hartman, A. N., Weisenberger, D. J., Laird, P. W., . . . Potter, J. D. (2015). Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology, 148(1), 77-87. e72.

Kim, C. G., Ahn, J. B., Jung, M., Beom, S. H., Kim, C., Kim, J. H., . . . Kim, N. K. (2016). Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers. British Journal of Cancer, 115(1), 25-33.

Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A., & Jemal, A. (2023). Colorectal cancer statistics, 2023. CA: a Cancer Journal for Clinicians, 73(3), 233–254.

PubMed  Google Scholar 

Leggett, B., & Whitehall, V. (2010). Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology, 138(6), 2088–2100.

Article  CAS  PubMed  Google Scholar 

Mezzapesa, M., Losurdo, G., Celiberto, F., Rizzi, S., d’Amati, A., Piscitelli, D., . . . Di Leo, A. (2022). Serrated colorectal lesions: an up-to-date review from histological pattern to molecular pathogenesis. International Journal of Molecular Sciences, 23(8), 4461

Gupta, R., Sinha, S., & Paul, R. N. (2018). The impact of microsatellite stability status in colorectal cancer. Current Problems in Cancer, 42(6), 548–559.

Article  PubMed  Google Scholar 

Yamagishi, H., Kuroda, H., Imai, Y., & Hiraishi, H. (2016). Molecular pathogenesis of sporadic colorectal cancers. Chinese Journal of Cancer, 35, 1–8.

Article  Google Scholar 

Hawkins, N., Norrie, M., Cheong, K., Mokany, E., Ku, S. L., Meagher, A., . . . Ward, R. (2002). CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology, 122(5), 1376-1387.

Yamane, L., Scapulatempo-Neto, C., Reis, R. M., & Guimarães, D. P. (2014). Serrated pathway in colorectal carcinogenesis. World Journal of Gastroenterology: WJG, 20(10), 2634.

Article  PubMed  PubMed Central  Google Scholar 

Fu, X., & Zhang, X. (2014). BRAF mutation as a potential marker to identify the proximal colon serrated polyps with malignant potential. International Journal of Clinical and Experimental Pathology, 7(11), 7319.

PubMed  PubMed Central  Google Scholar 

Borowsky, J., Dumenil, T., Bettington, M., Pearson, S.-A., Bond, C., Fennell, L., . . . Brown, I. (2018). The role of APC in WNT pathway activation in serrated neoplasia. Modern Pathology, 31(3), 495-504.

Guinney, J., Dienstmann, R., Wang, X., De Reynies, A., Schlicker, A., Soneson, C., . . . Angelino, P. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21(11), 1350-1356

Purcell, R. V., Visnovska, M., Biggs, P. J., Schmeier, S., & Frizelle, F. A. (2017). Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Scientific Reports, 7(1), 1–12.

Article  CAS  Google Scholar 

Flanagan, L., Schmid, J., Ebert, M., Soucek, P., Kunicka, T., Liska, V., . . . Tommasino, M. (2014). Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. European Journal of Clinical Microbiology & Infectious Diseases, 33(8), 1381-1390.

Mima, K., Nishihara, R., Qian, Z. R., Cao, Y., Sukawa, Y., Nowak, J. A., . . . Song, M. (2016). Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut, 65(12), 1973-1980.

Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., . . . Hold, G. L. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14(2), 207-215.

Mima, K., Sukawa, Y., Nishihara, R., Qian, Z. R., Yamauchi, M., Inamura, K., . . . Nosho, K. (2015). Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncology, 1(5), 653-661.

Stintzing, S., Wirapati, P., Lenz, H.-J., Neureiter, D., Von Weikersthal, L. F., Decker, T., . . . Heintges, T. (2019). Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Annals of Oncology, 30(11), 1796-1803.

Schatoff, E. M., Leach, B. I., & Dow, L. E. (2017). Wnt signaling and colorectal cancer. Current colorectal cancer reports, 13(2), 101–110.

Article  PubMed  PubMed Central  Google Scholar 

Sulit, A., Daigneault, M., Allen-Vercoe, E., Silander, O., Hock, B., McKenzie, J., . . . Purcell, R. (2023). Bacterial lipopolysaccharide modulates immune response in the colorectal tumor microenvironment. npj Biofilms and Microbiomes, 9(1), 59.

Zamani, S., Taslimi, R., Sarabi, A., Jasemi, S., Sechi, L. A., & Feizabadi, M. M. (2020). Enterotoxigenic Bacteroides fragilis: A possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Frontiers in Cellular and Infection Microbiology, 9, 449.

Article  PubMed  PubMed Central  Google Scholar 

Khodaverdi, N., Zeighami, H., Jalilvand, A., Haghi, F., & Hesami, N. (2021). High frequency of enterotoxigenic Bacteroides fragilis and Enterococcus faecalis in the paraffin-embedded tissues of Iranian colorectal cancer patients. BMC Cancer, 21(1), 1–7.

Article  Google Scholar 

Purcell, R. V., Pearson, J., Aitchison, A., Dixon, L., Frizelle, F. A., & Keenan, J. I. (2017). Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE, 12(2), e0171602.

Article  PubMed  PubMed Central  Google Scholar 

Purcell, R. V., Permain, J., & Keenan, J. I. (2022). Enterotoxigenic Bacteroides fragilis activates IL-8 expression through Stat3 in colorectal cancer cells. Gut Pathogens, 14(1), 1–7.

Article  Google Scholar 

Li, J., Huang, L., Zhao, H., Yan, Y., & Lu, J. (2020). The role of interleukins in colorectal cancer. International Journal of Biological Sciences, 16(13), 2323.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ternes, D., Tsenkova, M., Pozdeev, V. I., Meyers, M., Koncina, E., Atatri, S., . . . Heinken, A. (2022). The gut microbial metabolite formate exacerbates colorectal cancer progression. Nature Metabolism, 4(4), 458-475.

Larigot, L., Juricek, L., Dairou, J., & Coumoul, X. (2018). AhR signaling pathways and regulatory functions. Biochimie Open, 7, 1–9.

Article  PubMed  PubMed Central  Google Scholar 

De Rycke, J., & Oswald, E. (2001). Cytolethal distending toxin (CDT): A bacterial weapon to control host cell proliferation? FEMS Microbiology Letters, 203(2), 141–148.

Article  PubMed  Google Scholar 

Ge, Z., Feng, Y., Ge, L., Parry, N., Muthupalani, S., & Fox, J. G. (2017). Helicobacter hepaticus cytolethal distending toxin promotes intestinal carcinogenesis in 129Rag2-deficient mice. Cellular Microbiology, 19(7), e12728.

Article  Google Scholar 

Liyanage, N. P., Manthey, K. C., Dassanayake, R. P., Kuszynski, C. A., Oakley, G. G., & Duhamel, G. E. (2010). Helicobacter hepaticus cytolethal distending toxin causes cell death in intestinal epithelial cells via mitochondrial apoptotic pathway. Helicobacter, 15(2), 98–107.

Article  CAS  PubMed  Google Scholar 

Tremblay, W., Mompart, F., Lopez, E., Quaranta, M., Bergoglio, V., Hashim, S., . . . Trouche, D. (2021). Cytolethal distending toxin promotes replicative stress leading to genetic instability transmitted to daughter cells. Frontiers in Cell and Developmental Biology, 9, 656795.

Guidi, R., Guerra, L., Levi, L., Stenerlöw, B., Fox, J. G., Josenhans, C., . . . Frisan, T. (2013). Chronic exposure to the cytolethal distending toxins of Gram‐negative bacteria promotes genomic instability and altered DNA damage response. Cellular Microbiology, 15(1), 98-113.

He, Z., Gharaibeh, R. Z., Newsome, R. C., Pope, J. L., Dougherty, M. W., Tomkovich, S., . . . Hendrixson, D. R. (2019). Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, 68(2), 289-300.

Faïs, T., Delmas, J., Barnich, N., Bonnet, R., & Dalmasso, G. (2018). Colibactin: More than a new bacterial toxin. Toxins, 10(4), 151.

Article  PubMed  PubMed Central  Google Scholar 

Cuevas-Ramos, G., Petit, C. R., Marcq, I., Boury, M., Oswald, E., & Nougayrède, J.-P. (2010). Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences, 107(25), 11537–11542.

Article  CAS  Google Scholar 

Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H. M., Nomburg, J., . . . Stege, P. B. (2020). Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, 580(7802), 269–273.

Boleij, A., Hechenbleikner, E. M., Goodwin, A. C., Badani, R., Stein, E. M., Lazarev, M. G., . . . Wick, E. C. (2015). The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clinical Infectious Diseases, 60(2), 208-215.

Choi, V. M. (2015). Characterization of virulence-associated protein processing genes in Bacteroides fragilis. The University of Chicago.

留言 (0)

沒有登入
gif