Arnold, M., Sierra, M. S., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2017). Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66(4), 683–691.
Xi, Y., & Xu, P. (2021). Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 14(10), 101174.
Article PubMed PubMed Central Google Scholar
Sinicrope, F. A. (2022). Increasing incidence of early-onset colorectal cancer. New England Journal of Medicine, 386(16), 1547–1558.
Article CAS PubMed Google Scholar
Flemer, B., Lynch, D. B., Brown, J. M., Jeffery, I. B., Ryan, F. J., Claesson, M. J., . . . O'Toole, P. W. (2017). Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 66(4), 633–643.
Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., . . . Nagarsheth, N. (2017). Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 170(3), 548-563. e516.
Morley-Bunker, A., Walker, L., Currie, M., Pearson, J., & Eglinton, T. (2016). Translating colorectal cancer genetics into clinically useful biomarkers. Colorectal Disease, 18(8), 749–762.
Article CAS PubMed Google Scholar
Pino, M. S., & Chung, D. C. (2010). The chromosomal instability pathway in colon cancer. Gastroenterology, 138(6), 2059–2072.
Article CAS PubMed Google Scholar
Nguyen, L. H., Goel, A., & Chung, D. C. (2020). Pathways of colorectal carcinogenesis. Gastroenterology, 158(2), 291–302.
Article CAS PubMed Google Scholar
Conlin, A., Smith, G., Carey, F. A., Wolf, C. R., & Steele, R. J. (2005). The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut, 54(9), 1283–1286.
Article CAS PubMed PubMed Central Google Scholar
Lemieux, E., Cagnol, S., Beaudry, K., Carrier, J., & Rivard, N. (2015). Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene, 34(38), 4914–4927.
Article CAS PubMed Google Scholar
Rennoll, S., & Yochum, G. (2015). Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer. World Journal of Biological Chemistry, 6(4), 290.
Article PubMed PubMed Central Google Scholar
Phipps, A. I., Limburg, P. J., Baron, J. A., Burnett-Hartman, A. N., Weisenberger, D. J., Laird, P. W., . . . Potter, J. D. (2015). Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology, 148(1), 77-87. e72.
Kim, C. G., Ahn, J. B., Jung, M., Beom, S. H., Kim, C., Kim, J. H., . . . Kim, N. K. (2016). Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers. British Journal of Cancer, 115(1), 25-33.
Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A., & Jemal, A. (2023). Colorectal cancer statistics, 2023. CA: a Cancer Journal for Clinicians, 73(3), 233–254.
Leggett, B., & Whitehall, V. (2010). Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology, 138(6), 2088–2100.
Article CAS PubMed Google Scholar
Mezzapesa, M., Losurdo, G., Celiberto, F., Rizzi, S., d’Amati, A., Piscitelli, D., . . . Di Leo, A. (2022). Serrated colorectal lesions: an up-to-date review from histological pattern to molecular pathogenesis. International Journal of Molecular Sciences, 23(8), 4461
Gupta, R., Sinha, S., & Paul, R. N. (2018). The impact of microsatellite stability status in colorectal cancer. Current Problems in Cancer, 42(6), 548–559.
Yamagishi, H., Kuroda, H., Imai, Y., & Hiraishi, H. (2016). Molecular pathogenesis of sporadic colorectal cancers. Chinese Journal of Cancer, 35, 1–8.
Hawkins, N., Norrie, M., Cheong, K., Mokany, E., Ku, S. L., Meagher, A., . . . Ward, R. (2002). CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology, 122(5), 1376-1387.
Yamane, L., Scapulatempo-Neto, C., Reis, R. M., & Guimarães, D. P. (2014). Serrated pathway in colorectal carcinogenesis. World Journal of Gastroenterology: WJG, 20(10), 2634.
Article PubMed PubMed Central Google Scholar
Fu, X., & Zhang, X. (2014). BRAF mutation as a potential marker to identify the proximal colon serrated polyps with malignant potential. International Journal of Clinical and Experimental Pathology, 7(11), 7319.
PubMed PubMed Central Google Scholar
Borowsky, J., Dumenil, T., Bettington, M., Pearson, S.-A., Bond, C., Fennell, L., . . . Brown, I. (2018). The role of APC in WNT pathway activation in serrated neoplasia. Modern Pathology, 31(3), 495-504.
Guinney, J., Dienstmann, R., Wang, X., De Reynies, A., Schlicker, A., Soneson, C., . . . Angelino, P. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21(11), 1350-1356
Purcell, R. V., Visnovska, M., Biggs, P. J., Schmeier, S., & Frizelle, F. A. (2017). Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Scientific Reports, 7(1), 1–12.
Flanagan, L., Schmid, J., Ebert, M., Soucek, P., Kunicka, T., Liska, V., . . . Tommasino, M. (2014). Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. European Journal of Clinical Microbiology & Infectious Diseases, 33(8), 1381-1390.
Mima, K., Nishihara, R., Qian, Z. R., Cao, Y., Sukawa, Y., Nowak, J. A., . . . Song, M. (2016). Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut, 65(12), 1973-1980.
Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., . . . Hold, G. L. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14(2), 207-215.
Mima, K., Sukawa, Y., Nishihara, R., Qian, Z. R., Yamauchi, M., Inamura, K., . . . Nosho, K. (2015). Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncology, 1(5), 653-661.
Stintzing, S., Wirapati, P., Lenz, H.-J., Neureiter, D., Von Weikersthal, L. F., Decker, T., . . . Heintges, T. (2019). Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Annals of Oncology, 30(11), 1796-1803.
Schatoff, E. M., Leach, B. I., & Dow, L. E. (2017). Wnt signaling and colorectal cancer. Current colorectal cancer reports, 13(2), 101–110.
Article PubMed PubMed Central Google Scholar
Sulit, A., Daigneault, M., Allen-Vercoe, E., Silander, O., Hock, B., McKenzie, J., . . . Purcell, R. (2023). Bacterial lipopolysaccharide modulates immune response in the colorectal tumor microenvironment. npj Biofilms and Microbiomes, 9(1), 59.
Zamani, S., Taslimi, R., Sarabi, A., Jasemi, S., Sechi, L. A., & Feizabadi, M. M. (2020). Enterotoxigenic Bacteroides fragilis: A possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Frontiers in Cellular and Infection Microbiology, 9, 449.
Article PubMed PubMed Central Google Scholar
Khodaverdi, N., Zeighami, H., Jalilvand, A., Haghi, F., & Hesami, N. (2021). High frequency of enterotoxigenic Bacteroides fragilis and Enterococcus faecalis in the paraffin-embedded tissues of Iranian colorectal cancer patients. BMC Cancer, 21(1), 1–7.
Purcell, R. V., Pearson, J., Aitchison, A., Dixon, L., Frizelle, F. A., & Keenan, J. I. (2017). Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE, 12(2), e0171602.
Article PubMed PubMed Central Google Scholar
Purcell, R. V., Permain, J., & Keenan, J. I. (2022). Enterotoxigenic Bacteroides fragilis activates IL-8 expression through Stat3 in colorectal cancer cells. Gut Pathogens, 14(1), 1–7.
Li, J., Huang, L., Zhao, H., Yan, Y., & Lu, J. (2020). The role of interleukins in colorectal cancer. International Journal of Biological Sciences, 16(13), 2323.
Article CAS PubMed PubMed Central Google Scholar
Ternes, D., Tsenkova, M., Pozdeev, V. I., Meyers, M., Koncina, E., Atatri, S., . . . Heinken, A. (2022). The gut microbial metabolite formate exacerbates colorectal cancer progression. Nature Metabolism, 4(4), 458-475.
Larigot, L., Juricek, L., Dairou, J., & Coumoul, X. (2018). AhR signaling pathways and regulatory functions. Biochimie Open, 7, 1–9.
Article PubMed PubMed Central Google Scholar
De Rycke, J., & Oswald, E. (2001). Cytolethal distending toxin (CDT): A bacterial weapon to control host cell proliferation? FEMS Microbiology Letters, 203(2), 141–148.
Ge, Z., Feng, Y., Ge, L., Parry, N., Muthupalani, S., & Fox, J. G. (2017). Helicobacter hepaticus cytolethal distending toxin promotes intestinal carcinogenesis in 129Rag2-deficient mice. Cellular Microbiology, 19(7), e12728.
Liyanage, N. P., Manthey, K. C., Dassanayake, R. P., Kuszynski, C. A., Oakley, G. G., & Duhamel, G. E. (2010). Helicobacter hepaticus cytolethal distending toxin causes cell death in intestinal epithelial cells via mitochondrial apoptotic pathway. Helicobacter, 15(2), 98–107.
Article CAS PubMed Google Scholar
Tremblay, W., Mompart, F., Lopez, E., Quaranta, M., Bergoglio, V., Hashim, S., . . . Trouche, D. (2021). Cytolethal distending toxin promotes replicative stress leading to genetic instability transmitted to daughter cells. Frontiers in Cell and Developmental Biology, 9, 656795.
Guidi, R., Guerra, L., Levi, L., Stenerlöw, B., Fox, J. G., Josenhans, C., . . . Frisan, T. (2013). Chronic exposure to the cytolethal distending toxins of Gram‐negative bacteria promotes genomic instability and altered DNA damage response. Cellular Microbiology, 15(1), 98-113.
He, Z., Gharaibeh, R. Z., Newsome, R. C., Pope, J. L., Dougherty, M. W., Tomkovich, S., . . . Hendrixson, D. R. (2019). Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, 68(2), 289-300.
Faïs, T., Delmas, J., Barnich, N., Bonnet, R., & Dalmasso, G. (2018). Colibactin: More than a new bacterial toxin. Toxins, 10(4), 151.
Article PubMed PubMed Central Google Scholar
Cuevas-Ramos, G., Petit, C. R., Marcq, I., Boury, M., Oswald, E., & Nougayrède, J.-P. (2010). Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences, 107(25), 11537–11542.
Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H. M., Nomburg, J., . . . Stege, P. B. (2020). Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, 580(7802), 269–273.
Boleij, A., Hechenbleikner, E. M., Goodwin, A. C., Badani, R., Stein, E. M., Lazarev, M. G., . . . Wick, E. C. (2015). The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clinical Infectious Diseases, 60(2), 208-215.
Choi, V. M. (2015). Characterization of virulence-associated protein processing genes in Bacteroides fragilis. The University of Chicago.
留言 (0)