O’Brien, K. L., & Finlay, D. K. (2019). Immunometabolism and natural killer cell responses. Nature Reviews Immunology, 19(5), 282–290.
Article CAS PubMed Google Scholar
Kiessling, R., E. Klein, and H. Wigzell, "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol, 1975. 5(2): p. 112–7.
Herberman, R.B., M.E. Nunn, and D.H. Lavrin, Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer, 1975. 16(2): p. 216–29.
Vivier, E., et al. (2008). Functions of natural killer cells. Nature Immunology, 9(5), 503–510.
Article CAS PubMed Google Scholar
Morvan, M. G., & Lanier, L. L. (2016). NK cells and cancer: You can teach innate cells new tricks. Nature Reviews Cancer, 16(1), 7–19.
Article CAS PubMed Google Scholar
Guillerey, C., Huntington, N. D., & Smyth, M. J. (2016). Targeting natural killer cells in cancer immunotherapy. Nature Immunology, 17(9), 1025–1036.
Article CAS PubMed Google Scholar
Chiossone, L., et al. (2018). Natural killer cells and other innate lymphoid cells in cancer. Nature Reviews Immunology, 18(11), 671–688.
Article CAS PubMed Google Scholar
Raskov, H., et al. (2021). Cytotoxic CD8+ T cells in cancer and immunotherapy. British Journal of Cancer, 124(2), 359–367.
Article CAS PubMed Google Scholar
Pauken, K. E., & Wherry, E. J. (2015). Overcoming T cell exhaustion in infection and cancer. Trends in Immunology, 36(4), 265–276.
Article CAS PubMed PubMed Central Google Scholar
Irvine, D. J., et al. (2022). The future of engineered immune cell therapies. Science, 378(6622), 853–858.
Article CAS PubMed PubMed Central Google Scholar
Cappell, K. M., & Kochenderfer, J. N. (2023). Long-term outcomes following CAR T cell therapy: What we know so far. Nature Reviews. Clinical Oncology, 20(6), 359–371.
Article CAS PubMed PubMed Central Google Scholar
Ruggeri, L., et al. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 295(5562), 2097–2100.
Article CAS PubMed Google Scholar
Miller, J. S., et al. (2005). Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood, 105(8), 3051–3057.
Article CAS PubMed Google Scholar
Rubnitz, J. E., et al. (2010). NKAML: A pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. Journal of Clinical Oncology, 28(6), 955–959.
Article CAS PubMed PubMed Central Google Scholar
Heipertz, E. L., et al. (2021). Current perspectives on “off-the-shelf” allogeneic NK and CAR-NK cell therapies. Frontiers in Immunology, 12, 732135.
Article CAS PubMed PubMed Central Google Scholar
Maris, J. M. (2010). Recent advances in neuroblastoma. New England Journal of Medicine, 362(23), 2202–2211.
Article CAS PubMed Google Scholar
Matthay, K. K., et al. (2016). Neuroblastoma. Nat Rev Dis Primers, 2, 16078.
Kennedy, P.T., et al., Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer, 2023. 11(11).
Wienke, J., et al. (2021). The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. European Journal of Cancer, 144, 123–150.
Article CAS PubMed Google Scholar
Melaiu, O., et al. (2020). Cellular and gene signatures of tumor-infiltrating dendritic cells and natural-killer cells predict prognosis of neuroblastoma. Nature Communications, 11(1), 5992.
Article CAS PubMed PubMed Central Google Scholar
Pathania, A. S., et al. (2022). Immune checkpoint molecules in neuroblastoma: A clinical perspective. Seminars in Cancer Biology, 86(Pt 2), 247–258.
Article CAS PubMed Google Scholar
Nguyen, R., et al., Longitudinal NK cell kinetics and cytotoxicity in children with neuroblastoma enrolled in a clinical phase II trial. J Immunother Cancer, 2020. 8(1).
Federico, S.M., et al., A pilot trial of humanized anti-GD2 monoclonal antibody (hu14.18K322A) with chemotherapy and natural killer cells in children with recurrent/refractory neuroblastoma. Clin Cancer Res, 2017. 23(21): p. 6441–6449.
Rueda, F., et al. (1996). Interleukin-2 in neuroblastoma: Clinical perspectives based on biological studies. Cancer Biotherapy & Radiopharmaceuticals, 11(5), 303–308.
Mora, J., et al. (2024). GM-CSF, G-CSF or no cytokine therapy with anti-GD2 immunotherapy for high-risk neuroblastoma. International Journal of Cancer, 154(8), 1340–1364.
Article CAS PubMed Google Scholar
Esser, R., et al. (2012). NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. Journal of Cellular and Molecular Medicine, 16(3), 569–581.
Article CAS PubMed PubMed Central Google Scholar
Lode, H. N., et al. (2023). Long-term, continuous infusion of single-agent dinutuximab beta for relapsed/refractory neuroblastoma: An open-label, single-arm, Phase 2 study. British Journal of Cancer, 129(11), 1780–1786.
Article CAS PubMed PubMed Central Google Scholar
Ehlert, K., et al., Nivolumab and dinutuximab beta in two patients with refractory neuroblastoma. J Immunother Cancer, 2020. 8(1).
Zeng, Y., et al., Anti-neuroblastoma effect of ch14.18 antibody produced in CHO cells is mediated by NK-cells in mice. Mol Immunol, 2005. 42(11): p. 1311–9.
Anghelescu, D. L., et al. (2015). Comparison of pain outcomes between two anti-GD2 antibodies in patients with neuroblastoma. Pediatric Blood & Cancer, 62(2), 224–228.
Navid, F., et al., Phase I trial of a novel anti-GD2 monoclonal antibody, Hu14.18K322A, designed to decrease toxicity in children with refractory or recurrent neuroblastoma. J Clin Oncol, 2014. 32(14): p. 1445–52.
Markham, A. (2021). Naxitamab: First approval. Drugs, 81(2), 291–296.
Article CAS PubMed Google Scholar
Yu, A. L., et al. (2010). Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. New England Journal of Medicine, 363(14), 1324–1334.
Article CAS PubMed Google Scholar
Cupit-Link, M. and S.M. Federico, Treatment of high-risk neuroblastoma with dinutuximab and chemotherapy administered in all cycles of induction. Cancers (Basel), 2023. 15(18).
Furman, W.L., et al., Improved outcome in children with newly diagnosed high-risk neuroblastoma treated with chemoimmunotherapy: Updated results of a phase II study using hu14.18K322A. J Clin Oncol, 2022. 40(4): p. 335–344.
Mody, R., et al. (2017). Irinotecan-temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): An open-label, randomised, phase 2 trial. The lancet Oncology, 18(7), 946–957.
Article CAS PubMed PubMed Central Google Scholar
Mody, R., et al. (2020). Irinotecan, Temozolomide, and dinutuximab with GM-CSF in children with refractory or relapsed neuroblastoma: A report from the children’s oncology group. Journal of Clinical Oncology, 38(19), 2160–2169.
Article CAS PubMed PubMed Central Google Scholar
Raiser, P., et al. (2024). Chemo-immunotherapy with dinutuximab beta in patients with relapsed/progressive high-risk neuroblastoma: Does chemotherapy backbone matter? European Journal of Cancer, 202, 114001.
Article CAS PubMed Google Scholar
Shapiro, R.M., et al., Expansion, persistence, and efficacy of donor memory-like NK cells infused for posttransplant relapse. J Clin Invest, 2022. 132(11).
Page, A., et al. (2024). Development of NK cell-based cancer immunotherapies through receptor engineering. Cellular & Molecular Immunology, 21(4), 315–331.
留言 (0)