Pfanner, N., Warscheid, B., & Wiedemann, N. (2019). Mitochondrial proteins: From biogenesis to functional networks. Nature Review Molecular Cell Biology, 20(5), 267–284. https://doi.org/10.1038/s41580-018-0092-0
Amunts, A., Brown, A., Toots, J., Scheres, S. H. W., & Ramakrishnan, V. (2015). The structure of the human mitochondrial ribosome. Science, 348(6230), 95–98. https://doi.org/10.1126/science.aaa1193
Article CAS PubMed PubMed Central Google Scholar
Greber, B. J., & Ban, N. (2016). Structure and Function of the Mitochondrial Ribosome. Annual Review of Biochemistry, 85(1), 103–132. https://doi.org/10.1146/annurev-biochem-060815-014343
Article CAS PubMed Google Scholar
Lopez Sanchez, M. I. G., Krüger, A., Shiriaev, D. I., Liu, Y., & Rorbach, J. (2021). Human Mitoribosome Biogenesis and Its Emerging Links to Disease. International Journal of Molecular Sciences, 22(8), 3827. https://doi.org/10.3390/ijms22083827
Article CAS PubMed PubMed Central Google Scholar
Sylvester, J. E., Fischel-Ghodsian, N., Mougey, E. B., & O’Brien, T. W. (2004). Mitochondrial ribosomal proteins: Candidate genes for mitochondrial disease. Genetics in Medicine, 6(2), 73–80. https://doi.org/10.1097/01.gim.0000117333.21213.17
Article CAS PubMed Google Scholar
Koc, E. C., Ranasinghe, A., Burkhart, W., Blackburn, K., Koc, H., Moseley, A., & Spremulli, L. L. (2001). A new face on apoptosis: Death-associated protein 3 and PDCD9 are mitochondrial ribosomal proteins. FEBS Letters, 492(1–2), 166–170. https://doi.org/10.1016/s0014-5793(01)02250-5
Article CAS PubMed Google Scholar
Wazir, U., Orakzai, M. M., Khanzada, Z. S., Jiang, W. G., Sharma, A. K., Kasem, A., & Mokbel, K. (2015). The role of death-associated protein 3 in apoptosis, anoikis and human cancer. Cancer Cell International, 15, 39. https://doi.org/10.1186/s12935-015-0187-z
Article CAS PubMed PubMed Central Google Scholar
Miyazaki, T., Shen, M., Fujikura, D., Tosa, N., Kim, H.-R., Kon, S., Uede, T., & Reed, J. C. (2004). Functional role of death-associated protein 3 (DAP3) in anoikis. Journal of Biological Chemistry, 279(43), 44667–44672. https://doi.org/10.1074/jbc.m408101200
Article CAS PubMed Google Scholar
Yoo, Y. A., Kim, M. J., Park, J. K., Chung, Y. M., Lee, J. H., Chi, S.-G., Kim, J. S., & Yoo, Y. D. (2005). Mitochondrial ribosomal protein L41 suppresses cell growth in association with p53 and p27Kip1. Molecular and Cellular Biology, 25(15), 6603–6616. https://doi.org/10.1128/mcb.25.15.6603-6616.2005
Article CAS PubMed PubMed Central Google Scholar
Chen, Y.-C., Chang, M.-Y., Shiau, A.-L., Yo, Y.-T., & Wu, C.-L. (2007). Mitochondrial ribosomal protein S36 delays cell cycle progression in association with p53 modification and p21WAF1/CIP1 expression. Journal of Cellular Biochemistry, 100(4), 981–990. https://doi.org/10.1002/jcb.21079
Article CAS PubMed Google Scholar
Zhang, X., Gao, X., Coots, R. A., Conn, C. S., Liu, B., & Qian, S.-B. (2015). Translational control of the cytosolic stress response by mitochondrial ribosomal protein L18. Nature Structural and Molecular Biology, 22(5), 404–410. https://doi.org/10.1038/nsmb.3010
Article CAS PubMed Google Scholar
Li, H.-B., Wang, R.-X., Jiang, H.-B., Zhang, E.-D., Tan, J.-Q., Xu, H.-Z., Zhou, R.-R., & Xia, X.-B. (2016). Mitochondrial ribosomal protein L10 associates with cyclin B1/Cdk1 activity and mitochondrial function. DNA and Cell Biology, 35(11), 680–690. https://doi.org/10.1089/dna.2016.3271
Article CAS PubMed PubMed Central Google Scholar
Surovtseva, Y. V., Shutt, T. E., Cotney, J., Cimen, H., Chen, S. Y., Koc, E. C., & Shadel, G. S. (2011). Mitochondrial Ribosomal Protein L12 selectively associates with human mitochondrial RNA polymerase to activate transcription. Proceedings of the National Academy of Sciences, 108(44), 17921–17926. https://doi.org/10.1073/pnas.1108852108
Wang, Z., Cotney, J., & Shadel, G. S. (2007). Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression. Journal of Biological Chemistry, 282(17), 12610–12618. https://doi.org/10.1074/jbc.m700461200
Article CAS PubMed Google Scholar
Chang, C.-W., Wei, Z., Durell, S. R., Ma, L., Forgues, M., & Wang, X. W. (2022). A compendium of co-regulated mitoribosomal proteins in pan-cancer uncovers collateral defective events in tumor malignancy. iScience, 25(10), 105244. https://doi.org/10.1016/j.isci.2022.105244
Article CAS PubMed PubMed Central Google Scholar
Lu, J. (2019). The Warburg metabolism fuels tumor metastasis. Cancer and Metastasis Reviews, 38(1–2), 157–164. https://doi.org/10.1007/s10555-019-09794-5
Article CAS PubMed Google Scholar
The Cancer Genome Atlas Research Network. (2014). Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511(7511), 543–550. https://doi.org/10.1038/nature13385
Article CAS PubMed Central Google Scholar
Gao, Y., Li, F., Zhou, H., Yang, Y., Wu, R., Chen, Y., Li, W., Li, Y., Xu, X., Ke, C., & Pei, Z. (2017). Down-regulation of MRPS23 inhibits rat breast cancer proliferation and metastasis. Oncotarget, 8(42), 71772–71781. https://doi.org/10.18632/oncotarget.17888
Article PubMed PubMed Central Google Scholar
Klæstad, E., Opdahl, S., Engstrøm, M. J., Ytterhus, B., Wik, E., Bofin, A. M., & Valla, M. (2020). MRPS23 amplification and gene expression in breast cancer; association with proliferation and the non-basal subtypes. Breast Cancer Research and Treatment, 180(1), 73–86. https://doi.org/10.1007/s10549-020-05532-6
Article CAS PubMed PubMed Central Google Scholar
Liu, L., Zhang, X., Ding, H., Liu, X., Cao, D., Liu, Y., Liu, J., Lin, C., Zhang, N., Wang, G., Hou, J., Huang, B., Zhang, Y., & Lu, J. (2021). Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS. Oncogene, 40(20), 3548–3563. https://doi.org/10.1038/s41388-021-01785-7
Article CAS PubMed Google Scholar
Lyng, H., Brøvig, R. S., Svendsrud, D. H., Holm, R., Kaalhus, O., Knutstad, K., Oksefjell, H., Sundfør, K., Kristensen, G. B., & Stokke, T. (2006). Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genomics, 7(1), 268. https://doi.org/10.1186/1471-2164-7-268
Article CAS PubMed PubMed Central Google Scholar
Oviya, R. P., Gopal, G., Shirley, S. S., Sridevi, V., Jayavelu, S., & Rajkumar, T. (2021). Mitochondrial ribosomal small subunit proteins (MRPS) MRPS6 and MRPS23 show dysregulation in breast cancer affecting tumorigenic cellular processes. Gene, 790, 145697. https://doi.org/10.1016/j.gene.2021.145697
Article CAS PubMed Google Scholar
Pu, M., Wang, J., Huang, Q., Zhao, G., Xia, C., Shang, R., Zhang, Z., Bian, Z., Yang, X., & Tao, K. (2017). High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes. Tumor Biology, 39(7), 101042831770912. https://doi.org/10.1177/1010428317709127
Sotgia, F., Fiorillo, M., & Lisanti, M. P. (2017). Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: Early detection of treatment failure with companion diagnostics. Oncotarget, 8(40), 68730–68745. https://doi.org/10.18632/oncotarget.19612
Article PubMed PubMed Central Google Scholar
Qiu, X., Guo, D., Du, J., Bai, Y., & Wang, F. (2021). A novel biomarker, MRPS12 functions as a potential oncogene in ovarian cancer and is a promising prognostic candidate. Medicine (Baltimore), 100(8), e24898. https://doi.org/10.1097/md.0000000000024898
Article CAS PubMed Google Scholar
Xu, H., Zou, R., Li, F., Liu, J., Luan, N., Wang, S., & Zhu, L. (2021). MRPL15 is a novel prognostic biomarker and therapeutic target for epithelial ovarian cancer. Cancer Medicine, 10(11), 3655–3673. https://doi.org/10.1002/cam4.3907
留言 (0)