Haslauer, T., Greil, R., Zaborsky, N., & Geisberger, R. (2021). CAR T-cell therapy in hematological malignancies. International Journal of Molecular Sciences, 22(16), 8996. https://doi.org/10.3390/ijms22168996
CAS PubMed PubMed Central Google Scholar
Hou, A. J., Chen, L. C., & Chen, Y. Y. (2021). Navigating CAR-T cells through the solid-tumour microenvironment. Nature Reviews. Drug Discovery, 20(7), 531–550. https://doi.org/10.1038/s41573-021-00189-2
Sackstein, R., Schatton, T., & Barthel, S. R. (2017). T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Laboratory Investigation; a Journal of Technical Methods and Pathology, 97(6), 669–697. https://doi.org/10.1038/labinvest.2017.25
Dirkx, A. E. M., Oude Egbrink, M. G. A., Kuijpers, M. J. E., van der Niet, S. T., Heijnen, V. V. T., Bouma-terSteege, J. C. A., & Griffioen, A. W. (2003). Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Research, 63(9), 2322–2329.
Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322. https://doi.org/10.1016/j.ccr.2012.02.022
Turley, S. J., Cremasco, V., & Astarita, J. L. (2015). Immunological hallmarks of stromal cells in the tumour microenvironment. Nature Reviews. Immunology, 15(11), 669–682. https://doi.org/10.1038/nri3902
Posey, A. D., Schwab, R. D., Boesteanu, A. C., Steentoft, C., Mandel, U., Engels, B., & June, C. H. (2016). Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity, 44(6), 1444–1454. https://doi.org/10.1016/j.immuni.2016.05.014
CAS PubMed PubMed Central Google Scholar
Turajlic, S., Litchfield, K., Xu, H., Rosenthal, R., McGranahan, N., Reading, J. L., & Swanton, C. (2017). Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: A pan-cancer analysis. The Lancet. Oncology, 18(8), 1009–1021. https://doi.org/10.1016/S1470-2045(17)30516-8
Li, N., Torres, M. B., Spetz, M. R., Wang, R., Peng, L., Tian, M., & Ho, M. (2021). CAR T targeting tumor-associated exons of glypican 2 regress neuroblastoma in mice. Cell Reports. Medicine, 2(6). https://doi.org/10.1016/j.xcrm.2021.100297
Owens, G. L., Sheard, V. E., Kalaitsidou, M., Blount, D., Lad, Y., Cheadle, E. J., … Harrop, R. (2018). Preclinical assessment of CAR T-cell therapy targeting the tumor antigen 5T4 in ovarian cancer. Journal of Immunotherapy (Hagerstown, Md.: 1997), 41(3), 130–140. https://doi.org/10.1097/CJI.0000000000000203
Flugel, C. L., Majzner, R. G., Krenciute, G., Dotti, G., Riddell, S. R., Wagner, D. L., & Abou-El-Enein, M. (2023). Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nature Reviews. Clinical Oncology, 20(1), 49–62. https://doi.org/10.1038/s41571-022-00704-3
Lamers, C. H. J., Sleijfer, S., Vulto, A. G., Kruit, W. H. J., Kliffen, M., Debets, R., & Oosterwijk, E. (2006). Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 24(13), e20-22. https://doi.org/10.1200/JCO.2006.05.9964
Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy: The Journal of the American Society of Gene Therapy, 18(4), 843–851. https://doi.org/10.1038/mt.2010.24
Watanabe, K., Terakura, S., Martens, A. C., van Meerten, T., Uchiyama, S., Imai, M., … Murata, M. (2015). Target antigen density governs the efficacy of anti-CD20-CD28-CD3 ζ chimeric antigen receptor-modified effector CD8+ T cells. Journal of Immunology (Baltimore, Md.: 1950), 194(3), 911–920. https://doi.org/10.4049/jimmunol.1402346
Walker, A. J., Majzner, R. G., Zhang, L., Wanhainen, K., Long, A. H., Nguyen, S. M., & Mackall, C. L. (2017). Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Molecular Therapy: The Journal of the American Society of Gene Therapy, 25(9), 2189–2201. https://doi.org/10.1016/j.ymthe.2017.06.008
Salter, A. I., Rajan, A., Kennedy, J. J., Ivey, R. G., Shelby, S. A., Leung, I., … Riddell, S. R. (2021). Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Science Signaling, 14(697), eabe2606. https://doi.org/10.1126/scisignal.abe2606
O’Rourke, D. M., Nasrallah, M. P., Desai, A., Melenhorst, J. J., Mansfield, K., Morrissette, J. J. D., … Maus, M. V. (2017). A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science Translational Medicine, 9(399), eaaa0984. https://doi.org/10.1126/scitranslmed.aaa0984
Patel, U., Abernathy, J., Savani, B. N., Oluwole, O., Sengsayadeth, S., & Dholaria, B. (2022). CAR T cell therapy in solid tumors: A review of current clinical trials. EJHaem, 3(Suppl 1), 24–31. https://doi.org/10.1002/jha2.356
Ladányi, A. (2015). Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma. Pigment Cell & Melanoma Research, 28(5), 490–500. https://doi.org/10.1111/pcmr.12371
Majidpoor, J., & Mortezaee, K. (2021). Angiogenesis as a hallmark of solid tumors - Clinical perspectives. Cellular Oncology (Dordrecht), 44(4), 715–737. https://doi.org/10.1007/s13402-021-00602-3
Dianat-Moghadam, H., Nedaeinia, R., Keshavarz, M., Azizi, M., Kazemi, M., & Salehi, R. (2023). Immunotherapies targeting tumor vasculature: Challenges and opportunities. Frontiers in Immunology, 14, 1226360. https://doi.org/10.3389/fimmu.2023.1226360
CAS PubMed PubMed Central Google Scholar
Harlin, H., Meng, Y., Peterson, A. C., Zha, Y., Tretiakova, M., Slingluff, C., & Gajewski, T. F. (2009). Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Research, 69(7), 3077–3085. https://doi.org/10.1158/0008-5472.CAN-08-2281
Foeng, J., Comerford, I., & McColl, S. R. (2022). Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Reports. Medicine, 3(3), 100543. https://doi.org/10.1016/j.xcrm.2022.100543
CAS PubMed PubMed Central Google Scholar
Barkal, A. A., Brewer, R. E., Markovic, M., Kowarsky, M., Barkal, S. A., Zaro, B. W., & Weissman, I. L. (2019). CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature, 572(7769), 392–396. https://doi.org/10.1038/s41586-019-1456-0
CAS PubMed PubMed Central Google Scholar
Theruvath, J., Menard, M., Smith, B. A. H., Linde, M. H., Coles, G. L., Dalton, G. N., & Majzner, R. G. (2022). Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 28(2), 333–344. https://doi.org/10.1038/s41591-021-01625-x
CAS PubMed PubMed Central Google Scholar
Gordon, S. R., Maute, R. L., Dulken, B. W., Hutter, G., George, B. M., McCracken, M. N., & Weissman, I. L. (2017). PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 545(7655), 495–499. https://doi.org/10.1038/nature22396
CAS PubMed PubMed Central Google Scholar
Zhang, X.-L., Hu, L.-P., Yang, Q., Qin, W.-T., Wang, X., Xu, C.-J., & Jiang, S.-H. (2021). CTHRC1 promotes liver metastasis by reshaping infiltrated macrophages through physical interactions with TGF-β receptors in colorectal cancer. Oncogene, 40(23), 3959–3973. https://doi.org/10.1038/s41388-021-01827-0
Yu, J., Green, M. D., Li, S., Sun, Y., Journey, S. N., Choi, J. E., … Zou, W. (2021). Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nature Medicine, 27(1), 152–164. https://doi.org/10.1038/s41591-020-1131-x
Caronni, N., La Terza, F., Vittoria, F. M., Barbiera, G., Mezzanzanica, L., Cuzzola, V., & Ostuni, R. (2023). IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer. Nature, 623(7986), 415–422. https://doi.org/10.1038/s41586-023-06685-2
Morotti, M., Grimm, A. J., Hope, H. C., Arnaud, M., Desbuisson, M., Rayroux, N., & Coukos, G. (2024). PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature, 629(8011), 426–434. https://doi.org/10.1038/s41586-024-07352-w
CAS PubMed PubMed Central Google Scholar
Lacher, S. B., Dörr, J., de Almeida, G. P., Hönninger, J., Bayerl, F., Hirschberger, A., & Böttcher, J. P. (2024). PGE2 limits effector expansion of tumour-infiltrating stem-like CD8+ T cells. Nature, 629(8011), 417–425. https://doi.org/10.1038/s41586-024-07254-x
CAS PubMed PubMed Central Google Scholar
Lakins, M. A., Ghorani, E., Munir, H., Martins, C. P., & Shields, J. D. (2018). Cancer-associated fibroblasts induce antigen-specific deletion of CD8 + T cells to protect tumour cells. Nature Communications, 9(1), 948. https://doi.org/10.1038/s41467-018-03347-0
CAS PubMed PubMed Central Google Scholar
Cho, Y.-A., Yoon, H.-J., Lee, J.-I., Hong, S.-P., & Hong, S.-D. (2011). Relationship between the expressions of PD-L1 and tumor-infiltrating lymphocytes in oral squamous cell carcinoma. Oral Oncology, 47(12), 1148–1153. https://doi.org/10.1016/j.oraloncology.2011.08.007
Renner, K., Singer, K., Koehl, G. E., Geissler, E. K., Peter, K., Siska, P. J., & Kreutz, M. (2017). Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Frontiers in Immunology, 8, 248. https://doi.org/10.3389/fimmu.2017.00248
留言 (0)