The biological function of extracellular vesicles in prostate cancer and their clinical application as diagnostic and prognostic biomarkers

Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA A Cancer Journal for Clinicians, 74(1), 12–49. https://doi.org/10.3322/caac.21820

Article  PubMed  Google Scholar 

Fontana, F., Marzagalli, M., Montagnani Marelli, M., Raimondi, M., Moretti, R., & Limonta, P. (2020). Gonadotropin-releasing hormone receptors in prostate cancer: Molecular aspects and biological functions. International Journal of Molecular Sciences, 21(24), 9511. https://doi.org/10.3390/ijms21249511

Article  PubMed  PubMed Central  Google Scholar 

Serritella, A. V., & Hussain, M. (2024). Metastatic hormone–sensitive prostate cancer in the era of doublet and triplet therapy. Current Treatment Options in Oncology. https://doi.org/10.1007/s11864-023-01173-1

Article  PubMed  Google Scholar 

Fontana, F., & Limonta, P. (2021). Dissecting the hormonal signaling landscape in castration-resistant prostate cancer. Cells, 10(5), 1133. https://doi.org/10.3390/cells10051133

Article  PubMed  PubMed Central  Google Scholar 

Fontana, F., Anselmi, M., & Limonta, P. (2022). Molecular mechanisms and genetic alterations in prostate cancer: From diagnosis to targeted therapy. Cancer Letters, 534, 215619. https://doi.org/10.1016/j.canlet.2022.215619

Article  PubMed  Google Scholar 

Doyle, L., & Wang, M. (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8(7), 727. https://doi.org/10.3390/cells8070727

Article  PubMed  PubMed Central  Google Scholar 

Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., … Zuba‐Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1). https://doi.org/10.1080/20013078.2018.1535750

Bao, Q., Huang, Q., Chen, Y., Wang, Q., Sang, R., Wang, L., … Chen, W. (2022). Tumor-derived extracellular vesicles regulate cancer progression in the tumor microenvironment. Frontiers in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.796385

Fontana, F., Carollo, E., Melling, G. E., & Carter, D. R. F. (2021). Extracellular vesicles: Emerging modulators of cancer drug resistance. Cancers, 13(4), 749. https://doi.org/10.3390/cancers13040749

Article  PubMed  PubMed Central  Google Scholar 

Arena, G. O., Forte, S., Abdouh, M., Vanier, C., Corbeil, D., & Lorico, A. (2023). Horizontal transfer of malignant traits and the involvement of extracellular vesicles in metastasis. Cells, 12(12), 1566. https://doi.org/10.3390/cells12121566

Article  PubMed  PubMed Central  Google Scholar 

Rahbarghazi, R., Jabbari, N., Sani, N. A., Asghari, R., Salimi, L., Kalashani, S. A., … Rezaie, J. (2019). Tumor-derived extracellular vesicles: Reliable tools for cancer diagnosis and clinical applications. Cell Communication and Signaling, 17(1), 73. https://doi.org/10.1186/s12964-019-0390-y

Saleem, T., Sumrin, A., Bilal, M., Bashir, H., & Khawar, M. B. (2022). Tumor-derived extracellular vesicles: Potential tool for cancer diagnosis, prognosis, and therapy. Saudi Journal of Biological Sciences, 29(4), 2063–2071. https://doi.org/10.1016/j.sjbs.2022.01.012

Article  PubMed  PubMed Central  Google Scholar 

Yang, D., Liu, J., Qian, H., & Zhuang, Q. (2023). Cancer-associated fibroblasts: From basic science to anticancer therapy. Experimental & Molecular Medicine, 55(7), 1322–1332. https://doi.org/10.1038/s12276-023-01013-0

Article  Google Scholar 

Webber, J., Steadman, R., Mason, M. D., Tabi, Z., & Clayton, A. (2010). Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Research, 70(23), 9621–9630. https://doi.org/10.1158/0008-5472.CAN-10-1722

Article  PubMed  Google Scholar 

Wu, T., Wang, W., Shi, G., Hao, M., Wang, Y., Yao, M., … Wang, J. (2022). Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death & Disease, 13(7), 624. https://doi.org/10.1038/s41419-022-05086-z

Deep, G., & Panigrahi, G. K. (2015). Hypoxia-induced signaling promotes prostate cancer progression: Exosomes role as messenger of hypoxic response in tumor microenvironment. Critical reviews in oncogenesis, 20(5–6), 419–434. https://doi.org/10.1615/CritRevOncog.v20.i5-6.130

Article  PubMed  PubMed Central  Google Scholar 

Ramteke, A., Ting, H., Agarwal, C., Mateen, S., Somasagara, R., Hussain, A., … Deep, G. (2015). Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Molecular Carcinogenesis, 54(7), 554–565. https://doi.org/10.1002/mc.22124

McAtee, C. O., Berkebile, A. R., Elowsky, C. G., Fangman, T., Barycki, J. J., Wahl, J. K., … Simpson, M. A. (2015). Hyaluronidase Hyal1 increases tumor cell proliferation and motility through accelerated vesicle trafficking. Journal of Biological Chemistry, 290(21), 13144–13156. https://doi.org/10.1074/jbc.M115.647446

McAtee, C. O., Booth, C., Elowsky, C., Zhao, L., Payne, J., Fangman, T., … Simpson, M. A. (2019). Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biology, 78–79, 165–179. https://doi.org/10.1016/j.matbio.2018.05.002

Marzagalli, M., Fontana, F., Raimondi, M., & Limonta, P. (2021). Cancer stem cells—Key players in tumor relapse. Cancers, 13(3), 376. https://doi.org/10.3390/cancers13030376

Article  PubMed  PubMed Central  Google Scholar 

Sánchez, C. A., Andahur, E. I., Valenzuela, R., Castellón, E. A., Fullá, J. A., Ramos, C. G., & Triviño, J. C. (2016). Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget, 7(4), 3993–4008. https://doi.org/10.18632/oncotarget.6540

Article  PubMed  Google Scholar 

Zhao, H., Yang, L., Baddour, J., Achreja, A., Bernard, V., Moss, T., … Nagrath, D. (2016). Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 5. https://doi.org/10.7554/eLife.10250

Josson, S., Gururajan, M., Sung, S. Y., Hu, P., Shao, C., Zhau, H. E., … Chung, L. W. K. (2015). Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene, 34(21), 2690–2699. https://doi.org/10.1038/onc.2014.212

Wang, S., Du, P., Cao, Y., Ma, J., Yang, X., Yu, Z., & Yang, Y. (2022). Cancer associated fibroblasts secreted exosomal miR-1290 contributes to prostate cancer cell growth and metastasis via targeting GSK3β. Cell Death Discovery, 8(1), 371. https://doi.org/10.1038/s41420-022-01163-6

Article  PubMed  PubMed Central  Google Scholar 

Cao, Z., Xu, L., & Zhao, S. (2019). Exosome-derived miR-27a produced by PSC-27 cells contributes to prostate cancer chemoresistance through p53. Biochemical and Biophysical Research Communications, 515(2), 345–351. https://doi.org/10.1016/j.bbrc.2019.05.120

Article  PubMed  Google Scholar 

Shan, G., Gu, J., Zhou, D., Li, L., Cheng, W., Wang, Y., … Wang, X. (2020). Cancer-associated fibroblast-secreted exosomal miR-423–5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-β signaling pathway. Experimental & Molecular Medicine, 52(11), 1809–1822. https://doi.org/10.1038/s12276-020-0431-z

Zhang, Y., Zhao, J., Ding, M., Su, Y., Cui, D., Jiang, C., … Han, B. (2020). Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis. Journal of Experimental & Clinical Cancer Research, 39(1), 282. https://doi.org/10.1186/s13046-020-01761-1

Matsuda, C., Ishii, K., Nakagawa, Y., Shirai, T., Sasaki, T., Hirokawa, Y. S., … Watanabe, M. (2023). Fibroblast‐derived exosomal microRNA regulates NKX3‐1 expression in androgen‐sensitive, androgen receptor‐dependent prostate cancer cells. Journal of Cellular Biochemistry, 124(8), 1135–1144. https://doi.org/10.1002/jcb.30435

Saha, A., Kolonin, M. G., & DiGiovanni, J. (2023). Obesity and prostate cancer — Microenvironmental roles of adipose tissue. Nature Reviews Urology, 20(10), 579–596. https://doi.org/10.1038/s41585-023-00764-9

Article  PubMed  Google Scholar 

Laurent, V., Toulet, A., Attané, C., Milhas, D., Dauvillier, S., Zaidi, F., … Muller, C. (2019). Periprostatic adipose tissue favors prostate cancer cell invasion in an obesity-dependent manner: Role of oxidative stress. Molecular Cancer Research, 17(3), 821–835. https://doi.org/10.1158/1541-7786.MCR-18-0748

La Civita, E., Liotti, A., Cennamo, M., Crocetto, F., Ferro, M., Liguoro, P., … Terracciano, D. (2021). Peri-prostatic adipocyte-released TGFβ enhances prostate cancer cell motility by upregulation of connective tissue growth factor. Biomedicines, 9(11), 1692. https://doi.org/10.3390/biomedicines9111692

Liotti, A., La Civita, E., Cennamo, M., Crocetto, F., Ferro, M., Guadagno, E., … Terracciano, D. (2021). Periprostatic adipose tissue promotes prostate cancer resistance to docetaxel by paracrine IGF‐1 upregulation of TUBB2B beta‐tubulin isoform. The Prostate, 81(7), 407–417. https://doi.org/10.1002/pros.24117

Fontana, F., Anselmi, M., & Limonta, P. (2023). Adipocytes reprogram prostate cancer stem cell machinery. Journal of Cell Communication and Signaling. https://doi.org/10.1007/s12079-023-00738-x

Article  PubMed  PubMed Central  Google Scholar 

Fontana, F., Anselmi, M., Carollo, E., Sartori, P., Procacci, P., Carter, D., & Limonta, P. (2022). Adipocyte-derived extracellular vesicles promote prostate cancer cell aggressiveness by enabling multiple phenotypic and metabolic changes. Cells, 11(15), 2388. https://doi.org/10.3390/cells11152388

Article  PubMed  PubMed Central  Google Scholar 

Mathiesen, A., Haynes, B., Huyck, R., Brown, M., & Dobrian, A. (2023). Adipose tissue-derived extracellular vesicles contribute to phenotypic plasticity of prostate cancer cells. International Journal of Molecular Sciences, 24(2), 1229. https://doi.org/10.3390/ijms24021229

Article  PubMed  PubMed Central  Google Scholar 

Alvarez-Artime, A., Garcia-Soler, B., Gonzalez-Menendez, P., Fernandez-Vega, S., Cernuda-Cernuda, R., Hevia, D., … Sainz, R. M. (2023). Castration promotes the browning of the prostate tumor microenvironment. Cell Communication and Signaling, 21(1), 267. https://doi.org/10.1186/s12964-023-01294-y

Abd Elmageed, Z. Y., Yang, Y., Thomas, R., Ranjan, M., Mondal, D., Moroz, K., … Abdel-Mageed, A. B. (2014). Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells, 32(4), 983–997. https://doi.org/10.1002/stem.1619

Kwon, J. T. W., Bryant, R. J., & Parkes, E. E. (2021). The tumor microenvironment and immune responses in prostate cancer patients. Endocrine-Related Cancer, 28(8), T95–T107. https://doi.org/10.1530/ERC-21-0149

Article  PubMed  PubMed Central  Google Scholar 

Oh, D. Y., Fong, L., Newell, E. W., Turk, M. J., Chi, H., Chang, H. Y., … Lantz, O. (2021). Toward a better understanding of T cells in cancer. Cancer Cell, 39(12), 1549–1552. https://doi.org/10.1016/j.ccell.2021.11.010

Abusamra, A. J., Zhong, Z., Zheng, X., Li, M., Ichim, T. E., Chin, J. L., & Min, W.-P. (2005). Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells, Molecules & Diseases, 35(2), 169–173. https://doi.org/10.1016/j.bcmd.2005.07.001

Article  Google Scholar 

Clayton, A., Mitchell, J. P., Court, J., Mason, M. D., & Tabi, Z. (2007). Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Research, 67(15), 7458–7466. https://doi.org/10.1158/0008-5472.CAN-06-3456

Article  PubMed 

留言 (0)

沒有登入
gif