Role of MARCH E3 ubiquitin ligases in cancer development

Yang, Q., Zhao, J., Chen, D., & Wang, Y. (2021). E3 ubiquitin ligases: Styles, structures and functions. Mol Biomed, 2(1), 23. https://doi.org/10.1186/s43556-021-00043-2

Article  PubMed  PubMed Central  Google Scholar 

Dang, F., Nie, L., & Wei, W. (2021). Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death and Differentiation, 28(2), 427–438. https://doi.org/10.1038/s41418-020-00648-0

Article  CAS  PubMed  Google Scholar 

Damgaard, R. B. (2021). The ubiquitin system: From cell signalling to disease biology and new therapeutic opportunities. Cell Death and Differentiation, 28(2), 423–426. https://doi.org/10.1038/s41418-020-00703-w

Article  PubMed  PubMed Central  Google Scholar 

de Bie, P., & Ciechanover, A. (2011). Ubiquitination of E3 ligases: Self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death and Differentiation, 18(9), 1393–1402. https://doi.org/10.1038/cdd.2011.16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciechanover, A. (2015). The unravelling of the ubiquitin system. Nature Reviews Molecular Cell Biology, 16(5), 322–324. https://doi.org/10.1038/nrm3982

Article  CAS  PubMed  Google Scholar 

Behera, A., & Reddy, A. B. M. (2023). WWP1 E3 ligase at the crossroads of health and disease. Cell Death & Disease, 14(12), 853. https://doi.org/10.1038/s41419-023-06380-0

Article  CAS  Google Scholar 

Berndsen, C. E., & Wolberger, C. (2014). New insights into ubiquitin E3 ligase mechanism. Nature Structural & Molecular Biology, 21(4), 301–307. https://doi.org/10.1038/nsmb.2780

Article  CAS  Google Scholar 

Stewart, M. D., Ritterhoff, T., Klevit, R. E., & Brzovic, P. S. (2016). E2 enzymes: More than just middle men. Cell Research, 26(4), 423–440. https://doi.org/10.1038/cr.2016.35

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye, Y., & Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology, 10(11), 755–764. https://doi.org/10.1038/nrm2780

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. S., Cotton, T. R., Trevelyan, S. J., Richardson, L. W., Lee, W. T., Silke, J., et al. (2023). The unifying catalytic mechanism of the RING-between-RING E3 ubiquitin ligase family. Nature Communications, 14(1), 168. https://doi.org/10.1038/s41467-023-35871-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, P., Dai, X., Jiang, W., Li, Y., & Wei, W. (2020). RBR E3 ubiquitin ligases in tumorigenesis. Seminars in Cancer Biology, 67(Pt 2), 131–144. https://doi.org/10.1016/j.semcancer.2020.05.002

Article  CAS  PubMed  Google Scholar 

Wang, X., Herr, R. A., & Hansen, T. (2008). Viral and cellular MARCH ubiquitin ligases and cancer. Seminars in Cancer Biology, 18(6), 441–450. https://doi.org/10.1016/j.semcancer.2008.09.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, H., Li, S., & Shu, H. B. (2019). The Membrane-Associated MARCH E3 Ligase Family: Emerging Roles in Immune Regulation. Frontiers in Immunology, 10, 1751. https://doi.org/10.3389/fimmu.2019.01751

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauer, J., Bakke, O., & Morth, J. P. (2017). Overview of the membrane-associated RING-CH (MARCH) E3 ligase family. New Biotechnology, 38(Pt A), 7–15. https://doi.org/10.1016/j.nbt.2016.12.002

Article  CAS  PubMed  Google Scholar 

Liu, H., Mintern, J. D., & Villadangos, J. A. (2019). MARCH ligases in immunity. Current Opinion in Immunology, 58, 38–43. https://doi.org/10.1016/j.coi.2019.03.001

Article  CAS  PubMed  Google Scholar 

Matsuki, Y., Ohmura-Hoshino, M., Goto, E., Aoki, M., Mito-Yoshida, M., Uematsu, M., et al. (2007). Novel regulation of MHC class II function in B cells. EMBO Journal, 26(3), 846–854. https://doi.org/10.1038/sj.emboj.7601556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oh, J., Wu, N., Baravalle, G., Cohn, B., Ma, J., Lo, B., et al. (2013). MARCH1-mediated MHCII ubiquitination promotes dendritic cell selection of natural regulatory T cells. Journal of Experimental Medicine, 210(6), 1069–1077. https://doi.org/10.1084/jem.20122695

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borges, T. J., Murakami, N., Machado, F. D., Murshid, A., Lang, B. J., Lopes, R. L., et al. (2018). March1-dependent modulation of donor MHC II on CD103(+) dendritic cells mitigates alloimmunity. Nature Communications, 9(1), 3482. https://doi.org/10.1038/s41467-018-05572-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson, K. R., Liu, H., Healey, G., Vuong, V., Ishido, S., Herold, M. J., et al. (2018). MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE, 13(7), e0200540. https://doi.org/10.1371/journal.pone.0200540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baravalle, G., Park, H., McSweeney, M., Ohmura-Hoshino, M., Matsuki, Y., Ishido, S., et al. (2011). Ubiquitination of CD86 is a key mechanism in regulating antigen presentation by dendritic cells. The Journal of Immunology, 187(6), 2966–2973. https://doi.org/10.4049/jimmunol.1101643

Article  CAS  PubMed  Google Scholar 

Nagarajan, A., Petersen, M. C., Nasiri, A. R., Butrico, G., Fung, A., Ruan, H. B., et al. (2016). MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nature Communications, 7, 12639. https://doi.org/10.1038/ncomms12639

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, W., Su, J., Li, M., Li, T., Wang, X., Zhao, M., et al. (2021). Myricetin Induces Autophagy and Cell Cycle Arrest of HCC by Inhibiting MARCH1-Regulated Stat3 and p38 MAPK Signaling Pathways. Frontiers in Pharmacology, 12, 709526. https://doi.org/10.3389/fphar.2021.709526

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai, H., Li, M., Yang, W., Sun, X., Wang, P., Wang, X., et al. (2020). Resveratrol inhibits the malignant progression of hepatocellular carcinoma via MARCH1-induced regulation of PTEN/AKT signaling. Aging (Albany NY), 12(12), 11717–11731. https://doi.org/10.18632/aging.103338

Article  CAS  PubMed  Google Scholar 

Xie, L., Dai, H., Li, M., Yang, W., Yu, G., Wang, X., et al. (2019). MARCH1 encourages tumour progression of hepatocellular carcinoma via regulation of PI3K-AKT-beta-catenin pathways. Journal of Cellular and Molecular Medicine, 23(5), 3386–3401. https://doi.org/10.1111/jcmm.14235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, L., Li, M., Liu, D., Wang, X., Wang, P., Dai, H., et al. (2019). Secalonic Acid-F, a Novel Mycotoxin, Represses the Progression of Hepatocellular Carcinoma via MARCH1 Regulation of the PI3K/AKT/beta-catenin Signaling Pathway. Molecules, 24(3), https://doi.org/10.3390/molecules24030393.

Su, J., Liu, X., Zhao, X., Ma, H., Jiang, Y., Wang, X., et al. (2024). Curcumin Inhibits the Growth of Hepatocellular Carcinoma via the MARCH1-mediated Modulation of JAK2/STAT3 Signaling. Recent Patents on Anti-Cancer Drug Discovery. https://doi.org/10.2174/0115748928261490231124055059

Article  PubMed  Google Scholar 

Wang, N., Yang, L., Dai, J., Wu, Y., Zhang, R., Jia, X., et al. (2021). 5-FU inhibits migration and invasion of CRC cells through PI3K/AKT pathway regulated by MARCH1. Cell Biology International, 45(2), 368–381. https://doi.org/10.1002/cbin.11493

Article 

留言 (0)

沒有登入
gif