Yang, Q., Zhao, J., Chen, D., & Wang, Y. (2021). E3 ubiquitin ligases: Styles, structures and functions. Mol Biomed, 2(1), 23. https://doi.org/10.1186/s43556-021-00043-2
Article PubMed PubMed Central Google Scholar
Dang, F., Nie, L., & Wei, W. (2021). Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death and Differentiation, 28(2), 427–438. https://doi.org/10.1038/s41418-020-00648-0
Article CAS PubMed Google Scholar
Damgaard, R. B. (2021). The ubiquitin system: From cell signalling to disease biology and new therapeutic opportunities. Cell Death and Differentiation, 28(2), 423–426. https://doi.org/10.1038/s41418-020-00703-w
Article PubMed PubMed Central Google Scholar
de Bie, P., & Ciechanover, A. (2011). Ubiquitination of E3 ligases: Self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death and Differentiation, 18(9), 1393–1402. https://doi.org/10.1038/cdd.2011.16
Article CAS PubMed PubMed Central Google Scholar
Ciechanover, A. (2015). The unravelling of the ubiquitin system. Nature Reviews Molecular Cell Biology, 16(5), 322–324. https://doi.org/10.1038/nrm3982
Article CAS PubMed Google Scholar
Behera, A., & Reddy, A. B. M. (2023). WWP1 E3 ligase at the crossroads of health and disease. Cell Death & Disease, 14(12), 853. https://doi.org/10.1038/s41419-023-06380-0
Berndsen, C. E., & Wolberger, C. (2014). New insights into ubiquitin E3 ligase mechanism. Nature Structural & Molecular Biology, 21(4), 301–307. https://doi.org/10.1038/nsmb.2780
Stewart, M. D., Ritterhoff, T., Klevit, R. E., & Brzovic, P. S. (2016). E2 enzymes: More than just middle men. Cell Research, 26(4), 423–440. https://doi.org/10.1038/cr.2016.35
Article CAS PubMed PubMed Central Google Scholar
Ye, Y., & Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology, 10(11), 755–764. https://doi.org/10.1038/nrm2780
Article CAS PubMed PubMed Central Google Scholar
Wang, X. S., Cotton, T. R., Trevelyan, S. J., Richardson, L. W., Lee, W. T., Silke, J., et al. (2023). The unifying catalytic mechanism of the RING-between-RING E3 ubiquitin ligase family. Nature Communications, 14(1), 168. https://doi.org/10.1038/s41467-023-35871-z
Article CAS PubMed PubMed Central Google Scholar
Wang, P., Dai, X., Jiang, W., Li, Y., & Wei, W. (2020). RBR E3 ubiquitin ligases in tumorigenesis. Seminars in Cancer Biology, 67(Pt 2), 131–144. https://doi.org/10.1016/j.semcancer.2020.05.002
Article CAS PubMed Google Scholar
Wang, X., Herr, R. A., & Hansen, T. (2008). Viral and cellular MARCH ubiquitin ligases and cancer. Seminars in Cancer Biology, 18(6), 441–450. https://doi.org/10.1016/j.semcancer.2008.09.002
Article CAS PubMed PubMed Central Google Scholar
Lin, H., Li, S., & Shu, H. B. (2019). The Membrane-Associated MARCH E3 Ligase Family: Emerging Roles in Immune Regulation. Frontiers in Immunology, 10, 1751. https://doi.org/10.3389/fimmu.2019.01751
Article CAS PubMed PubMed Central Google Scholar
Bauer, J., Bakke, O., & Morth, J. P. (2017). Overview of the membrane-associated RING-CH (MARCH) E3 ligase family. New Biotechnology, 38(Pt A), 7–15. https://doi.org/10.1016/j.nbt.2016.12.002
Article CAS PubMed Google Scholar
Liu, H., Mintern, J. D., & Villadangos, J. A. (2019). MARCH ligases in immunity. Current Opinion in Immunology, 58, 38–43. https://doi.org/10.1016/j.coi.2019.03.001
Article CAS PubMed Google Scholar
Matsuki, Y., Ohmura-Hoshino, M., Goto, E., Aoki, M., Mito-Yoshida, M., Uematsu, M., et al. (2007). Novel regulation of MHC class II function in B cells. EMBO Journal, 26(3), 846–854. https://doi.org/10.1038/sj.emboj.7601556
Article CAS PubMed PubMed Central Google Scholar
Oh, J., Wu, N., Baravalle, G., Cohn, B., Ma, J., Lo, B., et al. (2013). MARCH1-mediated MHCII ubiquitination promotes dendritic cell selection of natural regulatory T cells. Journal of Experimental Medicine, 210(6), 1069–1077. https://doi.org/10.1084/jem.20122695
Article CAS PubMed PubMed Central Google Scholar
Borges, T. J., Murakami, N., Machado, F. D., Murshid, A., Lang, B. J., Lopes, R. L., et al. (2018). March1-dependent modulation of donor MHC II on CD103(+) dendritic cells mitigates alloimmunity. Nature Communications, 9(1), 3482. https://doi.org/10.1038/s41467-018-05572-z
Article CAS PubMed PubMed Central Google Scholar
Wilson, K. R., Liu, H., Healey, G., Vuong, V., Ishido, S., Herold, M. J., et al. (2018). MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE, 13(7), e0200540. https://doi.org/10.1371/journal.pone.0200540
Article CAS PubMed PubMed Central Google Scholar
Baravalle, G., Park, H., McSweeney, M., Ohmura-Hoshino, M., Matsuki, Y., Ishido, S., et al. (2011). Ubiquitination of CD86 is a key mechanism in regulating antigen presentation by dendritic cells. The Journal of Immunology, 187(6), 2966–2973. https://doi.org/10.4049/jimmunol.1101643
Article CAS PubMed Google Scholar
Nagarajan, A., Petersen, M. C., Nasiri, A. R., Butrico, G., Fung, A., Ruan, H. B., et al. (2016). MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nature Communications, 7, 12639. https://doi.org/10.1038/ncomms12639
Article CAS PubMed PubMed Central Google Scholar
Yang, W., Su, J., Li, M., Li, T., Wang, X., Zhao, M., et al. (2021). Myricetin Induces Autophagy and Cell Cycle Arrest of HCC by Inhibiting MARCH1-Regulated Stat3 and p38 MAPK Signaling Pathways. Frontiers in Pharmacology, 12, 709526. https://doi.org/10.3389/fphar.2021.709526
Article CAS PubMed PubMed Central Google Scholar
Dai, H., Li, M., Yang, W., Sun, X., Wang, P., Wang, X., et al. (2020). Resveratrol inhibits the malignant progression of hepatocellular carcinoma via MARCH1-induced regulation of PTEN/AKT signaling. Aging (Albany NY), 12(12), 11717–11731. https://doi.org/10.18632/aging.103338
Article CAS PubMed Google Scholar
Xie, L., Dai, H., Li, M., Yang, W., Yu, G., Wang, X., et al. (2019). MARCH1 encourages tumour progression of hepatocellular carcinoma via regulation of PI3K-AKT-beta-catenin pathways. Journal of Cellular and Molecular Medicine, 23(5), 3386–3401. https://doi.org/10.1111/jcmm.14235
Article CAS PubMed PubMed Central Google Scholar
Xie, L., Li, M., Liu, D., Wang, X., Wang, P., Dai, H., et al. (2019). Secalonic Acid-F, a Novel Mycotoxin, Represses the Progression of Hepatocellular Carcinoma via MARCH1 Regulation of the PI3K/AKT/beta-catenin Signaling Pathway. Molecules, 24(3), https://doi.org/10.3390/molecules24030393.
Su, J., Liu, X., Zhao, X., Ma, H., Jiang, Y., Wang, X., et al. (2024). Curcumin Inhibits the Growth of Hepatocellular Carcinoma via the MARCH1-mediated Modulation of JAK2/STAT3 Signaling. Recent Patents on Anti-Cancer Drug Discovery. https://doi.org/10.2174/0115748928261490231124055059
Wang, N., Yang, L., Dai, J., Wu, Y., Zhang, R., Jia, X., et al. (2021). 5-FU inhibits migration and invasion of CRC cells through PI3K/AKT pathway regulated by MARCH1. Cell Biology International, 45(2), 368–381. https://doi.org/10.1002/cbin.11493
留言 (0)