Electrical excitability of cancer cells—CELEX model updated

Levin, M. (2021). Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell,184(8), 1971–1989. https://doi.org/10.1016/j.cell.2021.02.034

Article  CAS  PubMed  Google Scholar 

Yang, M., & Brackenbury, W. J. (2013). Membrane potential and cancer progression. Frontiers in Physiology,4, 185. https://doi.org/10.3389/fphys.2013.00185

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, M., & Brackenbury, W. J. (n.d.). Harnessing the membrane potential to combat cancer progression. Bioelectricity, 75–80. https://doi.org/10.1089/bioe.2022.0001

Sundelacruz, S., Levin, M., & Kaplan, D. L. (2008). Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS ONE,3, e3737.

Article  PubMed  PubMed Central  Google Scholar 

van Vliet, P., De Boer, T. P., van der Heyden, M. A., El Tamer, M. K., Sluijter, J. P., Doevendans, P. A., & Goumans, M. (2010). Hyperpolarization induces differentiation in human cardiomyocyte progenitor cells. Stem Cell Reviews and Reports,6(2), 178–185.

Article  PubMed  Google Scholar 

Arcangeli, A., Crociani, O., Lastraioli, E., Masi, A., Pillozzi, S., & Becchetti, A. (2009). Targeting ion channels in cancer: A novel frontier in antineoplastic therapy. Current Medicinal Chemistry,16(1), 66–93. https://doi.org/10.2174/092986709787002835

Article  CAS  PubMed  Google Scholar 

Djamgoz, M. B. A., Coombes, R. C., & Schwab, A. (2014). Ion transport and cancer: from initiation to metastasis. Philosophical Transactions of the Royal Society B: Biological Sciences, 369:20130092. https://doi.org/10.1098/rstb.2013.0092

Prevarskaya, N., Skryma, R., & Shuba, Y. (2018). Ion channels in cancer: Are cancer hallmarks oncochannelopathies? Physiological Reviews, 98, 559–621. https://doi.org/10.1152/physrev.00044.2016

Article  CAS  PubMed  Google Scholar 

Djamgoz, M. B. A. (2011). Bioelectricity of cancer: Voltage-gated ion channels and direct-current electric fields. In C. Pullar (Ed.), The Physiology of Bioelectricity in Development, Tissue Regeneration, and Cancer (pp. 269–294). Taylor & Francis.

Djamgoz, M. B. A. (2014). Biophysics of cancer: Cellular excitability (“CELEX”) model of metastasis. Journal Clinical Experiments Oncology,S1, 005. https://doi.org/10.4172/2324-9110.S1-005

Article  Google Scholar 

Fraser, S. P., Diss, J. K., Chioni, A. M., Mycielska, M. E., Pan, H., Yamaci, R. F., Pani, F., Siwy, Z., Krasowska, M., Grzywna, Z., Brackenbury, W. J., Theodorou, D., Koyutürk, M., Kaya, H., Battaloglu, E., De Bella, M. T., Slade, M. J., Tolhurst, R., Palmieri, C., … Djamgoz, M. B. A. (2005). Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clinical Cancer Research,11, 5381–5389. https://doi.org/10.1158/1078-0432.CCR-05-0327

Grimes, J. A., Fraser, S. P., Stephens, G. J., Downing, J. E. G., Laniado, M. E., Foster, C. S., Abel, P. D., & Djamgoz, M. B. A. (1995). Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: Contribution to invasiveness in vitro. FEBS Letters,369, 290–294.

Article  CAS  PubMed  Google Scholar 

Roger, S., Rollin, J., Barascu, A., Besson, P., Raynal, P. I., Iochmann, S., Lei, M., Bougnoux, P., Gruel, Y., & Le Guennec, J. Y. (2007). Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. International Journal of Biochemistry & Cell Biology,39, 774–786.

Article  CAS  Google Scholar 

Laniado, M. E., Lalani, E. N., Fraser, S. P., Grimes, J. A., Bhangal, G., Djamgoz, M. B. A., & Abel, P. D. (1997). Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. American Journal of Pathology,150(4), 1213–1221.

CAS  PubMed  PubMed Central  Google Scholar 

Rao, R., Shah, S., Bhattacharya, D., Toukam, D. K., Cáceres, R., Pomeranz Krummel, D. A., & Sengupta, S. (2022). Ligand-gated ion channels as targets for treatment and management of cancers. Frontiers in Physiology,13, 839437. https://doi.org/10.3389/fphys.2022.839437

Article  PubMed  PubMed Central  Google Scholar 

Otero-Sobrino, Á., Blanco-Carlón, P., Navarro-Aguadero, M. Á., Gallardo, M., Martínez-López, J., & Velasco-Estévez, M. (2023). Mechanosensitive ion channels: Their physiological importance and potential key role in cancer. International Journal of Molecular Sciences,24(18), 13710. https://doi.org/10.3390/ijms241813710

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraser, S. P., Salvador, V., Manning, E. A., Mizal, J., Altun, S., Raza, M., Berridge, R. J., & Djamgoz, M. B. A. (2003). Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol,195, 479–487. https://doi.org/10.1002/jcp.10312

Article  CAS  PubMed  Google Scholar 

Mycielska, M. E., & Djamgoz, M. B. A. (2004). Cellular mechanisms of direct-current electric field effects: Galvanotaxis and metastatic disease. Journal of Cell Science,117(9), 1631–1639. https://doi.org/10.1242/jcs.01125

Article  CAS  PubMed  Google Scholar 

Grimes, J. A., Djamgoz, M. B. A., Downing, J. E. G., Laniado, M. E., Foster, C. S., & Abel, P. D. (1993). Differences in expression of voltage gated ion channels between low and highly metastatic Dunning prostate cancer cell lines in vitro. Urological Research,21, P72.

Google Scholar 

Brackenbury, W. J. (2012). Voltage-gated sodium channels and metastatic disease. Channels (Austin, Tex.),6, 352–361. https://doi.org/10.4161/chan.21910

Article  CAS  PubMed  Google Scholar 

Djamgoz, M. B. A., Fraser, S. P., & Brackenbury, W. J. (2019). In vivo evidence for voltage-gated sodium channel expression in carcinomas and potentiation of metastasis. Cancers (Basel),11, 1675. https://doi.org/10.3390/cancers11111675

Article  CAS  PubMed  Google Scholar 

Mao, W., Zhang, J., Körner, H., Jiang, Y., & Ying, S. (2019). The emerging role of voltage-gated sodium channels in tumor biology. Frontiers in Oncology,9, 124. https://doi.org/10.3389/fonc.2019.00124

Article  PubMed  PubMed Central  Google Scholar 

Diss, J. K. J., Fraser, S. P., & Djamgoz, M. B. A. (2004). Voltage-gated Na+ channels: Multiplicity of expression, plasticity, functional implications and pathophyiological aspects. European Biophysics Journal,33, 180–193.

Article  CAS  PubMed  Google Scholar 

Brackenbury, W. J., Chioni, A. M., Diss, J. K., & Djamgoz, M. B. A. (2007). The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Research and Treatment,101, 149–160. https://doi.org/10.1007/s10549-006-9281-1

Article  PubMed  Google Scholar 

Guzel, R. M., Ogmen, K., Ilieva, K. M., Fraser, S. P., & Djamgoz, M. B. A. (2019). Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. Journal of Cellular Physiology,234, 6582–6593. https://doi.org/10.1002/jcp.27399

Article  CAS  PubMed  Google Scholar 

Fraser, S. P., Onkal, R., Theys, M., Bosmans, F., & Djamgoz, M. B. A. (2022). Neonatal NaV1.5 channels: Pharmacological distinctiveness of a cancer-related voltage-gated sodium channel splice variant. British Journal of Pharmacology, 179(3), 473–486. https://doi.org/10.1111/bph.15668

Article  CAS  PubMed  Google Scholar 

Yamaci, R. F., Fraser, S. P., Battaloglu, E., Kaya, H., Erguler, K., Foster, C. S., & Djamgoz, M. B. A. (2017). Neonatal Nav1.5 protein expression in normal adult human tissues and breast cancer. Pathology Research and Practice,213, 900–907. https://doi.org/10.1016/j.prp.2017.06.003

Article  CAS  PubMed  Google Scholar 

Diss, J. K., Archer, S. N., Hirano, J., Fraser, S. P., & Djamgoz, M. B. A. (2001). Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate,48(3), 165–178. https://doi.org/10.1002/pros.1095

Article  CAS  PubMed  Google Scholar 

Onkal, R., Mattis, J. H., Fraser, S. P., Diss, J. K., Shao, D., Okuse, K., & Djamgoz, M. B. A. (2008). Alternative splicing of Nav1.5: An electrophysiological comparison of “neonatal” and “adult” isoforms and critical involvement of a lysine residue. Journal of Cellular Physiology,216(3), 716–726. https://doi.org/10.1002/jcp.21451

Article  CAS  PubMed  Google Scholar 

Djamgoz, M. B. A., & Onkal, R. (2013). Persistent current blockers of voltage-gated sodium channels: A clinical opportunity for controlling metastatic disease. Recent Patents on Anti-Cancer Drug Discovery,8(1), 66–84. https://doi.org/10.2174/15748928130107

Article  CAS  PubMed  Google Scholar 

Leslie, T. K., & Brackenbury, W. J. (2023). Sodium channels and the ionic microenvironment of breast tumours. Journal of Physiology,601(9), 1543–1553. https://doi.org/10.1113/JP282306

Article  CAS  PubMed 

留言 (0)

沒有登入
gif