Levin, M. (2021). Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell,184(8), 1971–1989. https://doi.org/10.1016/j.cell.2021.02.034
Article CAS PubMed Google Scholar
Yang, M., & Brackenbury, W. J. (2013). Membrane potential and cancer progression. Frontiers in Physiology,4, 185. https://doi.org/10.3389/fphys.2013.00185
Article CAS PubMed PubMed Central Google Scholar
Yang, M., & Brackenbury, W. J. (n.d.). Harnessing the membrane potential to combat cancer progression. Bioelectricity, 75–80. https://doi.org/10.1089/bioe.2022.0001
Sundelacruz, S., Levin, M., & Kaplan, D. L. (2008). Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS ONE,3, e3737.
Article PubMed PubMed Central Google Scholar
van Vliet, P., De Boer, T. P., van der Heyden, M. A., El Tamer, M. K., Sluijter, J. P., Doevendans, P. A., & Goumans, M. (2010). Hyperpolarization induces differentiation in human cardiomyocyte progenitor cells. Stem Cell Reviews and Reports,6(2), 178–185.
Arcangeli, A., Crociani, O., Lastraioli, E., Masi, A., Pillozzi, S., & Becchetti, A. (2009). Targeting ion channels in cancer: A novel frontier in antineoplastic therapy. Current Medicinal Chemistry,16(1), 66–93. https://doi.org/10.2174/092986709787002835
Article CAS PubMed Google Scholar
Djamgoz, M. B. A., Coombes, R. C., & Schwab, A. (2014). Ion transport and cancer: from initiation to metastasis. Philosophical Transactions of the Royal Society B: Biological Sciences, 369:20130092. https://doi.org/10.1098/rstb.2013.0092
Prevarskaya, N., Skryma, R., & Shuba, Y. (2018). Ion channels in cancer: Are cancer hallmarks oncochannelopathies? Physiological Reviews, 98, 559–621. https://doi.org/10.1152/physrev.00044.2016
Article CAS PubMed Google Scholar
Djamgoz, M. B. A. (2011). Bioelectricity of cancer: Voltage-gated ion channels and direct-current electric fields. In C. Pullar (Ed.), The Physiology of Bioelectricity in Development, Tissue Regeneration, and Cancer (pp. 269–294). Taylor & Francis.
Djamgoz, M. B. A. (2014). Biophysics of cancer: Cellular excitability (“CELEX”) model of metastasis. Journal Clinical Experiments Oncology,S1, 005. https://doi.org/10.4172/2324-9110.S1-005
Fraser, S. P., Diss, J. K., Chioni, A. M., Mycielska, M. E., Pan, H., Yamaci, R. F., Pani, F., Siwy, Z., Krasowska, M., Grzywna, Z., Brackenbury, W. J., Theodorou, D., Koyutürk, M., Kaya, H., Battaloglu, E., De Bella, M. T., Slade, M. J., Tolhurst, R., Palmieri, C., … Djamgoz, M. B. A. (2005). Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clinical Cancer Research,11, 5381–5389. https://doi.org/10.1158/1078-0432.CCR-05-0327
Grimes, J. A., Fraser, S. P., Stephens, G. J., Downing, J. E. G., Laniado, M. E., Foster, C. S., Abel, P. D., & Djamgoz, M. B. A. (1995). Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: Contribution to invasiveness in vitro. FEBS Letters,369, 290–294.
Article CAS PubMed Google Scholar
Roger, S., Rollin, J., Barascu, A., Besson, P., Raynal, P. I., Iochmann, S., Lei, M., Bougnoux, P., Gruel, Y., & Le Guennec, J. Y. (2007). Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. International Journal of Biochemistry & Cell Biology,39, 774–786.
Laniado, M. E., Lalani, E. N., Fraser, S. P., Grimes, J. A., Bhangal, G., Djamgoz, M. B. A., & Abel, P. D. (1997). Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. American Journal of Pathology,150(4), 1213–1221.
CAS PubMed PubMed Central Google Scholar
Rao, R., Shah, S., Bhattacharya, D., Toukam, D. K., Cáceres, R., Pomeranz Krummel, D. A., & Sengupta, S. (2022). Ligand-gated ion channels as targets for treatment and management of cancers. Frontiers in Physiology,13, 839437. https://doi.org/10.3389/fphys.2022.839437
Article PubMed PubMed Central Google Scholar
Otero-Sobrino, Á., Blanco-Carlón, P., Navarro-Aguadero, M. Á., Gallardo, M., Martínez-López, J., & Velasco-Estévez, M. (2023). Mechanosensitive ion channels: Their physiological importance and potential key role in cancer. International Journal of Molecular Sciences,24(18), 13710. https://doi.org/10.3390/ijms241813710
Article CAS PubMed PubMed Central Google Scholar
Fraser, S. P., Salvador, V., Manning, E. A., Mizal, J., Altun, S., Raza, M., Berridge, R. J., & Djamgoz, M. B. A. (2003). Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol,195, 479–487. https://doi.org/10.1002/jcp.10312
Article CAS PubMed Google Scholar
Mycielska, M. E., & Djamgoz, M. B. A. (2004). Cellular mechanisms of direct-current electric field effects: Galvanotaxis and metastatic disease. Journal of Cell Science,117(9), 1631–1639. https://doi.org/10.1242/jcs.01125
Article CAS PubMed Google Scholar
Grimes, J. A., Djamgoz, M. B. A., Downing, J. E. G., Laniado, M. E., Foster, C. S., & Abel, P. D. (1993). Differences in expression of voltage gated ion channels between low and highly metastatic Dunning prostate cancer cell lines in vitro. Urological Research,21, P72.
Brackenbury, W. J. (2012). Voltage-gated sodium channels and metastatic disease. Channels (Austin, Tex.),6, 352–361. https://doi.org/10.4161/chan.21910
Article CAS PubMed Google Scholar
Djamgoz, M. B. A., Fraser, S. P., & Brackenbury, W. J. (2019). In vivo evidence for voltage-gated sodium channel expression in carcinomas and potentiation of metastasis. Cancers (Basel),11, 1675. https://doi.org/10.3390/cancers11111675
Article CAS PubMed Google Scholar
Mao, W., Zhang, J., Körner, H., Jiang, Y., & Ying, S. (2019). The emerging role of voltage-gated sodium channels in tumor biology. Frontiers in Oncology,9, 124. https://doi.org/10.3389/fonc.2019.00124
Article PubMed PubMed Central Google Scholar
Diss, J. K. J., Fraser, S. P., & Djamgoz, M. B. A. (2004). Voltage-gated Na+ channels: Multiplicity of expression, plasticity, functional implications and pathophyiological aspects. European Biophysics Journal,33, 180–193.
Article CAS PubMed Google Scholar
Brackenbury, W. J., Chioni, A. M., Diss, J. K., & Djamgoz, M. B. A. (2007). The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Research and Treatment,101, 149–160. https://doi.org/10.1007/s10549-006-9281-1
Guzel, R. M., Ogmen, K., Ilieva, K. M., Fraser, S. P., & Djamgoz, M. B. A. (2019). Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. Journal of Cellular Physiology,234, 6582–6593. https://doi.org/10.1002/jcp.27399
Article CAS PubMed Google Scholar
Fraser, S. P., Onkal, R., Theys, M., Bosmans, F., & Djamgoz, M. B. A. (2022). Neonatal NaV1.5 channels: Pharmacological distinctiveness of a cancer-related voltage-gated sodium channel splice variant. British Journal of Pharmacology, 179(3), 473–486. https://doi.org/10.1111/bph.15668
Article CAS PubMed Google Scholar
Yamaci, R. F., Fraser, S. P., Battaloglu, E., Kaya, H., Erguler, K., Foster, C. S., & Djamgoz, M. B. A. (2017). Neonatal Nav1.5 protein expression in normal adult human tissues and breast cancer. Pathology Research and Practice,213, 900–907. https://doi.org/10.1016/j.prp.2017.06.003
Article CAS PubMed Google Scholar
Diss, J. K., Archer, S. N., Hirano, J., Fraser, S. P., & Djamgoz, M. B. A. (2001). Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate,48(3), 165–178. https://doi.org/10.1002/pros.1095
Article CAS PubMed Google Scholar
Onkal, R., Mattis, J. H., Fraser, S. P., Diss, J. K., Shao, D., Okuse, K., & Djamgoz, M. B. A. (2008). Alternative splicing of Nav1.5: An electrophysiological comparison of “neonatal” and “adult” isoforms and critical involvement of a lysine residue. Journal of Cellular Physiology,216(3), 716–726. https://doi.org/10.1002/jcp.21451
Article CAS PubMed Google Scholar
Djamgoz, M. B. A., & Onkal, R. (2013). Persistent current blockers of voltage-gated sodium channels: A clinical opportunity for controlling metastatic disease. Recent Patents on Anti-Cancer Drug Discovery,8(1), 66–84. https://doi.org/10.2174/15748928130107
Article CAS PubMed Google Scholar
Leslie, T. K., & Brackenbury, W. J. (2023). Sodium channels and the ionic microenvironment of breast tumours. Journal of Physiology,601(9), 1543–1553. https://doi.org/10.1113/JP282306
留言 (0)