Budczies, J., von Winterfeld, M., Klauschen, F., Bockmayr, M., Lennerz, J. K., Denkert, C., et al. (2015). The landscape of metastatic progression patterns across major human cancers. Oncotarget, 6(1), 570–583. https://doi.org/10.18632/oncotarget.2677
Paget, S. (1889). The distribution of secondary growths in cancer of the breast. The Lancet, 571–573.
Ewing, J. (1922). Metastasis, neoplastic disease: a treatise on tumors. W. B. Saunders.
Weiss, S. W., Goldblum, J. R., & Folpe, A. L. (2007). Enzinger and Weiss's soft tissue tumors. Elsevier Health Sciences.
Janssen, I., Heymsfield, S. B., Wang, Z., & Ross, R. (2000). Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. Journal of Applied Physiology, 89(1), 81–88. https://doi.org/10.1152/jappl.2000.89.1.81
Article CAS PubMed Google Scholar
Korthuis, R. J. (2011). Skeletal muscle circulation. In Colloquium Series on Integrated Systems Physiology: From Molecule to Function (Vol. 3, pp. 1–144). Morgan & Claypool Life Sciences.
Hasegawa, S., Sakurai, Y., Imazu, H., Matsubara, T., Ochiai, M., Funabiki, T., et al. (2000). Metastasis to the forearm skeletal muscle from an adenocarcinoma of the colon: report of a case. Surgery Today, 30(12), 1118–1123. https://doi.org/10.1007/s005950070013
Article CAS PubMed Google Scholar
Haygood, T. M., Wong, J., Lin, J. C., Li, S., Matamoros, A., Costelloe, C. M., et al. (2012). Skeletal muscle metastases: a three-part study of a not-so-rare entity. Skeletal Radiology, 41(8), 899–909. https://doi.org/10.1007/s00256-011-1319-8
Surov, A., Gottschling, S., Bolz, J., Kornhuber, M., Alfieri, A., Holzhausen, H.-J., et al. (2013). Distant metastases in meningioma: An underestimated problem. Journal of Neuro-Oncology, 112(3), 323–327. https://doi.org/10.1007/s11060-013-1074-x
Tamura, T., Kurishima, K., Nakazawa, K., Kagohashi, K., Ishikawa, H., Satoh, H., et al. (2015). Specific organ metastases and survival in metastatic non-small-cell lung cancer. Molecular Clinical Oncology, 3(1), 217–221. https://doi.org/10.3892/mco.2014.410
Willis, R. (1952). The Spread of tumors in the human body: London. Butterworth & Co Ltd..
Lam, K. Y., Dickens, P., & Chan, A. (1993). Tumors of the heart. A 20-year experience with a review of 12,485 consecutive autopsies. Archives of Pathology Laboratory Medicine, 117(10), 1027–1031.
Reynen, K. (1996). Frequency of primary tumors of the heart. The American Journal of Cardiology, 77(1), 107. https://doi.org/10.1016/s0002-9149(97)89149-7
Article CAS PubMed Google Scholar
Crist, S. B., & Ghajar, C. M. (2021). When a house is not a home: A survey of Antimetastatic niches and potential mechanisms of disseminated tumor cell suppression. Annual Review of Pathology: Mechanisms of Disease, 16, 409–432. https://doi.org/10.1146/annurev-pathmechdis-012419-032647
Lasagna, A., Ghiara, M., Mahagna, A. A., Lombardini, A. A., Cuzzocrea, F., & Porta, C. (2022). Skeletal muscle metastases: Pitfalls and challenges of a highly inhospitable environment. Future Oncology, 18(8), 897–901. https://doi.org/10.2217/fon-2021-1489
Article CAS PubMed Google Scholar
Pretell-Mazzini, J., Younis, M. H., & Subhawong, T. (2020). Skeletal muscle metastases from carcinomas: A review of the literature. JBJS Reviews, 8(7), e19. https://doi.org/10.2106/JBJS.RVW.19.00114
LaBan, M. M., Nagarajan, R., & Riutta, J. C. (2010). Paucity of muscle metastasis in otherwise widely disseminated cancer: A conundrum. American Journal of Physical Medicine Rehabilitation, 89(11), 931–935. https://doi.org/10.1097/PHM.0b013e3181f713c3
Weiss, L. (1989). Biomechanical destruction of cancer cells in skeletal muscle: A rate-regulator for hematogenous metastasis. Clinical Experimental Metastasis, 7(5), 483–491. https://doi.org/10.1007/BF01753809
Article CAS PubMed Google Scholar
Parlakian, A., Gomaa, I., Solly, S., Arandel, L., Mahale, A., Born, G., et al. (2010). Skeletal muscle phenotypically converts and selectively inhibits metastatic cells in mice. PLoS One, 5(2), e9299. https://doi.org/10.1371/journal.pone.0009299
Article CAS PubMed PubMed Central Google Scholar
Djaldetti, M., Sredni, B., Zigelman, R., Verber, M., & Fishman, P. (1996). Muscle cells produce a low molecular weight factor with anti-cancer activity. Clinical Experimental Metastasis, 14(3), 189–196. https://doi.org/10.1007/BF00053891
Article CAS PubMed Google Scholar
Luo, C., Jiang, Y., Liu, Y., & Li, X. (2002). Experimental study on mechanism and rarity of metastases in skeletal muscle. Chinese Medical Journal, 115(11), 1645–1649.
Crist, S. B., Nemkov, T., Dumpit, R. F., Dai, J., Tapscott, S. J., True, L. D., et al. (2022). Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nature Cell Biology, 24(4), 538–553. https://doi.org/10.1038/s41556-022-00881-4
Article CAS PubMed Google Scholar
Burningham, Z., Hashibe, M., Spector, L., & Schiffman, J. D. (2012). The epidemiology of sarcoma. Clinical Sarcoma Research, 2(1), 14. https://doi.org/10.1186/2045-3329-2-14
Article PubMed PubMed Central Google Scholar
Greenlee, R. T., Goodman, M. T., Lynch, C. F., Platz, C. E., Havener, L. A., & Howe, H. L. (2010). The occurrence of rare cancers in US adults, 1995–2004. Public Health Reports, 125(1), 28–43. https://doi.org/10.1177/003335491012500106
Article PubMed PubMed Central Google Scholar
Kulothungan, V., Sathishkumar, K., Leburu, S., Ramamoorthy, T., Stephen, S., Basavarajappa, D., et al. (2022). Burden of cancers in India-estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer, 22(1), 527. https://doi.org/10.1186/s12885-022-09578-1
Article PubMed PubMed Central Google Scholar
Lin, L., Li, Z., Yan, L., Liu, Y., Yang, H., & Li, H. (2021). Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990–2019. Journal of Hematology Oncology, 14(1), 1–24. https://doi.org/10.1186/s13045-021-01213-z
Cresti, A., Chiavarelli, M., Glauber, M., Tanganelli, P., Scalese, M., Cesareo, F., et al. (2016). Incidence rate of primary cardiac tumors: A 14-year population study. Journal of Cardiovascular Medicine, 17(1), 37–43. https://doi.org/10.2459/JCM.0000000000000059
Agaram, N. P. (2022). Evolving classification of rhabdomyosarcoma. Histopathology, 80(1), 98–108. https://doi.org/10.1111/his.14449
Article PubMed PubMed Central Google Scholar
Barr, F. G., Chatten, J., D'Cruz, C. M., Wilson, A. E., Nauta, L. E., Nycum, L. M., et al. (1995). Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA, 273(7), 553–557. https://doi.org/10.1001/jama.1995.03520310051029
Article CAS PubMed Google Scholar
Chen, J., Baxi, K., Lipsitt, A. E., Hensch, N. R., Wang, L., Sreenivas, P., et al. (2023). Defining function of wild-type and three patient-specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma. ELife, 12, e68221. https://doi.org/10.7554/eLife.68221
Article PubMed PubMed Central Google Scholar
Zhang, T., Künne, C., Ding, D., Günther, S., Guo, X., Zhou, Y., et al. (2022). Replication collisions induced by de-repressed S-phase transcription are connected with malignant transformation of adult stem cells. Nature Communications, 13(1), 6907. https://doi.org/10.1038/s41467-022-34577-y
Article CAS PubMed PubMed Central Google Scholar
Kaspar, P., Zikova, M., Bartunek, P., Sterba, J., Strnad, H., Kren, L., et al. (2015). The expression of c-Myb correlates with the levels of rhabdomyosarcoma-specific marker myogenin. Scientific Reports, 5(1), 15090. https://doi.org/10.1038/srep15090
留言 (0)