Seyfried, T. N., & Huysentruyt, L. C. (2013). On the origin of cancer metastasis. Critical Reviews in Oncogenesis, 18(1–2), 43–73. https://doi.org/10.1615/critrevoncog.v18.i1-2.40
Article PubMed PubMed Central Google Scholar
Jin X, Zhu Z, Shi Y. Metastasis mechanism and gene/protein expression in gastric cancer with distant organs metastasis. Bull Cancer. Published online October 1, 2014. https://doi.org/10.1684/bdc.2013.1882
Irani, S. (2019). Emerging insights into the biology of metastasis: A review article. Iranian Journal of Basic Medical Sciences, 22(8), 833–847. https://doi.org/10.22038/ijbms.2019.32786.7839
Article PubMed PubMed Central Google Scholar
Yin Z, Mancuso JJ, Li F, Wong STC. Chapter 2 - Genomics-based cancer theranostics. In: Chen X, Wong S, eds. Cancer Theranostics. Academic Press; 2014:9–20. https://doi.org/10.1016/B978-0-12-407722-5.00002-5
Yachida, S., Jones, S., Bozic, I., et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467(7319), 1114–1117. https://doi.org/10.1038/nature09515
Article CAS PubMed PubMed Central Google Scholar
Faltas, B. (2012). Cornering metastases: Therapeutic targeting of circulating tumor cells and stem cells. Frontiers in Oncology., 2, 68. https://doi.org/10.3389/fonc.2012.00068
Article PubMed PubMed Central Google Scholar
Mitchell, M. J., & King, M. R. (2014). Physical biology in cancer 3 The role of cell glycocalyx in vascular transport of circulating tumor cells. American Journal of Physiology-Cell Physiology., 306(2), C89–C97. https://doi.org/10.1152/ajpcell.00285.2013
Article CAS PubMed Google Scholar
Potdar, P. D., & Lotey, N. K. (2015). Role of circulating tumor cells in future diagnosis and therapy of cancer. Journal of Cancer Metastasis and Treatment., 1, 44–56. https://doi.org/10.4103/2394-4722.158803
Jahanban-Esfahlan, R., de la Guardia, M., Ahmadi, D., & Yousefi, B. (2018). Modulating tumor hypoxia by nanomedicine for effective cancer therapy. Journal of Cellular Physiology., 233(3), 2019–2031. https://doi.org/10.1002/jcp.25859
Article CAS PubMed Google Scholar
Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., et al. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling., 18(1), 59. https://doi.org/10.1186/s12964-020-0530-4
Article PubMed PubMed Central Google Scholar
Perrault, C. M., Brugues, A., Bazellieres, E., Ricco, P., Lacroix, D., & Trepat, X. (2015). Traction forces of endothelial cells under slow shear flow. Biophysical Journal, 109(8), 1533–1536. https://doi.org/10.1016/j.bpj.2015.08.036
Article CAS PubMed PubMed Central Google Scholar
Boldock L, Wittkowske C, Perrault CM. Microfluidic traction force microscopy to study mechanotransduction in angiogenesis. Microcirculation. 2017;24(5). https://doi.org/10.1111/micc.12361
Ma, S., Fu, A., Chiew, G. G. Y., & Luo, K. Q. (2017). Hemodynamic shear stress stimulates migration and extravasation of tumor cells by elevating cellular oxidative level. Cancer Letters., 388, 239–248. https://doi.org/10.1016/j.canlet.2016.12.001
Article CAS PubMed Google Scholar
Weth, A., Krol, I., Priesner, K., et al. (2020). A novel device for elimination of cancer cells from blood specimens. Science and Reports, 10(1), 10181. https://doi.org/10.1038/s41598-020-67071-w
Landwehr, G. M., Kristof, A. J., Rahman, S. M., et al. (2018). Biophysical analysis of fluid shear stress induced cellular deformation in a microfluidic device. Biomicrofluidics, 12(5), 054109. https://doi.org/10.1063/1.5063824
Article CAS PubMed PubMed Central Google Scholar
Marrella, A., Fedi, A., Varani, G., et al. (2021). High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS ONE, 16(1), e0245536. https://doi.org/10.1371/journal.pone.0245536
Article CAS PubMed PubMed Central Google Scholar
Khoo, B. L., Grenci, G., Lim, Y. B., Lee, S. C., Han, J., & Lim, C. T. (2018). Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device. Nature Protocols, 13(1), 34–58. https://doi.org/10.1038/nprot.2017.125
Article CAS PubMed Google Scholar
Wong, K. H. K., Tessier, S. N., Miyamoto, D. T., et al. (2017). Whole blood stabilization for the microfluidic isolation and molecular characterization of circulating tumor cells. Nature Communications, 8(1), 1733. https://doi.org/10.1038/s41467-017-01705-y
Article CAS PubMed PubMed Central Google Scholar
Mishra, A., Dubash, T. D., Edd, J. F., et al. (2020). Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. PNAS, 117(29), 16839–16847. https://doi.org/10.1073/pnas.2006388117
Article CAS PubMed PubMed Central Google Scholar
Harouaka, R. A., Nisic, M., & Zheng, S. Y. (2013). Circulating Tumor Cell Enrichment Based on Physical Properties. Journal of Laboratory Automation, 18(6), 455–468. https://doi.org/10.1177/2211068213494391
Article CAS PubMed Google Scholar
Wu, P. H., Aroush, D. R. B., Asnacios, A., et al. (2018). A comparison of methods to assess cell mechanical properties. Nature Methods, 15(7), 491–498. https://doi.org/10.1038/s41592-018-0015-1
Article CAS PubMed PubMed Central Google Scholar
Mak, M., & Erickson, D. (2013). A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies. Integrative Biology., 5(11), 1374–1384. https://doi.org/10.1039/c3ib40128f
Article CAS PubMed PubMed Central Google Scholar
Zhang, X., & Mak, M. (2021). Biophysical informatics approach for quantifying phenotypic heterogeneity in cancer cell migration in confined microenvironments. Bioinformatics, 37(14), 2042–2052. https://doi.org/10.1093/bioinformatics/btab053
Chan, T. J., Zhang, X., & Mak, M. (2023). Biophysical informatics reveals distinctive phenotypic signatures and functional diversity of single-cell lineages. Bioinformatics., 39(1), btac833. https://doi.org/10.1093/bioinformatics/btac833
Article CAS PubMed Google Scholar
Huang, L., Liang, F., Feng, Y., Zhao, P., & Wang, W. (2020). On-chip integrated optical stretching and electrorotation enabling single-cell biophysical analysis. Microsystems & Nanoengineering, 6(1), 1–14. https://doi.org/10.1038/s41378-020-0162-2
Mauritz, J. M. A., Tiffert, T., Seear, R., et al. (2010). Detection of Plasmodium falciparum-infected red blood cells by optical stretching. JBO., 15(3), 030517. https://doi.org/10.1117/1.3458919
Wu, P. H., Aroush, D. R. B., Asnacios, A., et al. (2018). Comparative study of cell mechanics methods. Nature Methods, 15(7), 491–498. https://doi.org/10.1038/s41592-018-0015-1
Article CAS PubMed PubMed Central Google Scholar
Puig-De-Morales, M., Grabulosa, M., Alcaraz, J., et al. (2001). Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. Journal of Applied Physiology., 91(3), 1152–1159. https://doi.org/10.1152/jappl.2001.91.3.1152
Article CAS PubMed Google Scholar
Tseng, Y., Kole, T. P., & Wirtz, D. (2002). Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophysical Journal., 83(6), 3162–3176. https://doi.org/10.1016/S0006-3495(02)75319-8
留言 (0)