An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer’s disease: targeting molecular approach Nrf2, NF-κB, and CREB

Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88(5):615–626. https://doi.org/10.1016/S0092-8674(00)81904-2

Article  CAS  PubMed  Google Scholar 

Ahn KS, Aggarwal BB (2005) Transcription factor NF-κB: a sensor for smoke and stress signals. Ann N Y Acad Sci 1056(1):218–233. https://doi.org/10.1196/annals.1352.026

Article  CAS  PubMed  Google Scholar 

Aldskogius H, Kozlova EN (1998) Central neuron–glial and glial–glial interactions following axon injury. Prog Neurobiol 55(1):1–26. https://doi.org/10.1016/S0301-0082(97)00093-2

Article  CAS  PubMed  Google Scholar 

Anderson SC, Cryan JF, Dinan T (2017) The psychobiotic revolution: mood, food, and the new science of the gut-brain connection. National Geographic Books

Anwer S et al (2021) Tumor necrosis factor-α induces claudin-3 upregulation in kidney tubular epithelial cells through NF-κB and CREB1. Am J Physiol Cell Physiol 320(4):C495–C508

Article  CAS  PubMed  Google Scholar 

Babkina I, Sergeeva S, Gorbacheva L (2021) The role of NF-κB in neuroinflammation. Neurochem J 15:114–128

Article  CAS  Google Scholar 

Bahn G, Park JS, Yun UJ, Lee YJ, Choi Y, Park JS, Baek SH, Choi BY, Cho YS, Kim HK, Han J (2109) NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models. Proc Natl Acad Sci 116(25):12516–23. https://doi.org/10.1073/pnas.1819541116

Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9(7):1422–1438. https://doi.org/10.1111/j.1460-9568.1997.tb01497.x

Article  CAS  PubMed  Google Scholar 

Behl T, Kaur I, Sehgal A, Kumar A, Uddin MS, Bungau S (2021) The interplay of ABC transporters in Aβ translocation and cholesterol metabolism: implicating their roles in Alzheimer’s disease. Mol Neurobiol 58:1564–1582. https://doi.org/10.1007/s12035-020-02211-x

Article  CAS  PubMed  Google Scholar 

Bejarano E, Cuervo AM (2010) Chaperone-mediated autophagy. Proc Am Thorac Soc 7(1):29–39

Article  PubMed  PubMed Central  Google Scholar 

Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81(12):1079–1088. https://doi.org/10.1212/WNL.0b013e3182a4a577

Article  PubMed  Google Scholar 

Borghi A, Verstrepen L, Beyaert R (2016) TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol 116:1. https://doi.org/10.1016/j.bcp.2016.03.009

Article  CAS  PubMed  Google Scholar 

Boykoff N, Moieni M, Subramanian SK (2009) Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response. J Cancer Survivorship. https://doi.org/10.1007/s11764-009-0098-x

Article  Google Scholar 

Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23(10):1183–1193. https://doi.org/10.1038/s41593-020-0687-6

Article  CAS  PubMed  Google Scholar 

Butchart J, Brook L, Hopkins V, Teeling J, Püntener U, Culliford D et al (2015) Etanercept in Alzheimer disease: a randomized, placebo-controlled, double-blind, phase 2 trial. Neurology 84(21):2161–2168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-κB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45(1):7–17. https://doi.org/10.1093/clinchem/45.1.7

Article  CAS  PubMed  Google Scholar 

Cheng S, Hou J, Zhang C, Xu C, Wang L, Zou X et al (2015) Minocycline reduces neuroinflammation but does not ameliorate neuron loss in a mouse model of neurodegeneration. Sci Rep 5(1):10535

Article  PubMed  PubMed Central  Google Scholar 

Chiarini A, Armato U, Hu P, Dal Prà I (2020) Danger-sensing/patten recognition receptors and neuroinflammation in Alzheimer’s disease. Int J Mol Sci 21(23):9036. https://doi.org/10.3390/ijms21239036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chistiakov DA, Bobryshev YV, Orekhov AN (2015) Changes in transcriptome of macrophages in atherosclerosis. J Cell Mol Med 19(6):1163–1173. https://doi.org/10.1111/jcmm.12591

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, Chiew MY (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296-302. https://doi.org/10.1093/nar/gkx1067

Article  CAS  PubMed  Google Scholar 

Cuadrado A, Kügler S, Lastres-Becker I (2018) Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol 14:522–534

Article  CAS  PubMed  Google Scholar 

Cummings JL, Vinters HV, Cole GM, Khachaturian ZS (1998) Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51(1 Suppl 1):S2-17. https://doi.org/10.1212/WNL.51.1_Suppl_1.S2

Article  CAS  PubMed  Google Scholar 

Dar TA, Uprety B, Sankar M, Maurya MR (2019) Robust and electron deficient oxidovanadium (iv) porphyrin catalysts for selective epoxidation and oxidative bromination reactions in aqueous media. Green Chem 21(7):1757–1768

Article  CAS  Google Scholar 

de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, Hoozemans J, van Horssen J (2008a) Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radical Biol Med 45(10):1375–1383

Article  Google Scholar 

De Vries EN, Ramrattan MA, Smorenburg SM, Gouma DJ, Boermeester MA (2008b) The incidence and nature of in-hospital adverse events: a systematic review. Qual Saf Health Care 17(3):216. https://doi.org/10.1136/qshc.2007.023622

Article  PubMed  Google Scholar 

Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH (2021) Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 29:1669

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz-San Segundo F, Medina GN, Ramirez-Medina E, Velazquez-Salinas L, Koster M, Grubman MJ, de los Santos T (2016) Synonymous deoptimization of foot-and-mouth disease virus causes attenuation in vivo while inducing a strong neutralizing antibody response. J Virol 90(3):1298–1310. https://doi.org/10.1128/jvi.02167-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8(4):325–332. https://doi.org/10.1016/j.cmet.2008.08.009

Article  PubMed  Google Scholar 

El-Sahar AE, Shiha NA, El Sayed NS, Ahmed LA (2021) Alogliptin attenuates lipopolysaccharide-induced neuroinflammation in mice through modulation of TLR4/MYD88/NF-κB and miRNA-155/SOCS-1 signaling pathways. Int J Neuropsychopharmacol 24(2):158–169

Article  CAS  PubMed  Google Scholar 

Etcheberrigaray R, Tan M, Dewachter I, Kuipéri C, Van der Auwera I, Wera S et al (2004) Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc Natl Acad Sci 101(30):11141–11146

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fall K, Fang F, Mucci LA, Ye W, Andrén O, Johansson JE, Andersson SO, Sparén P, Klein G, Stampfer M, Adami HO (2009) Immediate risk for cardiovascular events and suicide following a prostate cancer diagnosis: prospective coho

留言 (0)

沒有登入
gif