The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease

Almweisheer S, Bernstein CN, Graff LA, Patten SB, Bolton J, Fisk JD, Hitchon CA, Marriott J, Marrie RA, CIHR Tea in Defining the Burden and Managing the Effects of Immune-mediated Inflammatory Disease (2023) Well-being and flourishing mental health in adults with inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis in Manitoba, Canada: a cross-sectional study. BMJ Open 13(6):e073782. https://doi.org/10.1136/bmjopen-2023-073782

Article  PubMed  PubMed Central  Google Scholar 

Arroyo AB, Bernal-Carrión M, Cantón-Sandoval J, Cabas I, Corbalán-Vélez R, Martínez-Menchón T, Ferri B, Cayuela ML, García-Moreno D, Mulero V (2023) NAMPT and PARylation are involved in the pathogenesis of atopic dermatitis. Int J Mol Sci 24(9):7992. https://doi.org/10.3390/ijms24097992

Article  CAS  PubMed  PubMed Central  Google Scholar 

Askary A, Smeeton J, Paul S, Schindler S, Braasch I, Ellis NA, Postlethwait J, Miller CT, Crump JG (2016) Ancient origin of lubricated joints in bony vertebrates. Elife 19(5):e16415. https://doi.org/10.7554/eLife.16415

Article  Google Scholar 

Bailone RL, Fukushima HCS, Ventura Fernandes BH, De Aguiar LK, Corrêa T, Janke H, Grejo Setti P, Roça RO, Borra RC (2020) Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res 7(36):13. https://doi.org/10.1186/s42826-020-00042-4. (PMID:32382525;PMCID:PMC7203993)

Article  Google Scholar 

Baker ME (2019) Steroid receptors and vertebrate evolution. Mol Cell Endocrinol 496:110526. https://doi.org/10.1016/j.mce.2019.110526

Article  CAS  PubMed  Google Scholar 

Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, Majid A (2019) Animal models of multiple sclerosis: from rodents to zebrafish. Mult Scler 25(3):306–324. https://doi.org/10.1177/1352458518805246. (Epub 2018 Oct 15 PMID: 30319015)

Article  PubMed  Google Scholar 

Carney TJ, von der Hardt S, Sonntag C, Amsterdam A, Topczewski J, Hopkins N et al (2007) Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis. Development 134:3461–3471

Article  CAS  PubMed  Google Scholar 

Chen H, Lei P, Ji H, Ma J, Fang Y, Yu H, Du J, Qu L, Yang Q, Luo L, Zhang K, Wu W, Jin L, Sun D (2023) Escherichia coli Nissle 1917 ghosts alleviate inflammatory bowel disease in zebrafish. Life Sci 15(329):121956. https://doi.org/10.1016/j.lfs.2023.121956

Article  CAS  Google Scholar 

Costa FV, Rosa LV, Quadros VA, Santos ARS, Kalueff AV, Rosemberg DB (2019) Understanding nociception-related phenotypes in adult zebrafish: behavioral and pharmacological characterization using a new acetic acid model. Behav Brain Res 359:570–578. https://doi.org/10.1016/j.bbr.2018.10.009

Article  CAS  PubMed  Google Scholar 

Costamagna D, Costelli P, Sampaolesi M, Penna F (2015) Role of inflammation in muscle homeostasis and myogenesis. Mediators Inflamm 2015:1–14

Article  Google Scholar 

Curtright A, Rosser M, Goh S, Keown B, Wagner E, Sharifi J et al (2015) Modeling nociception in zebrafish: a way forward for unbiased analgesic discovery. PLoS ONE 10:e0116766. https://doi.org/10.1371/journal.pone.0116766

Article  PubMed  PubMed Central  Google Scholar 

Danilova N, Steiner LA (2002) B cells develop in the zebrafish pancreas. PNAS 99(21):13711–13716. https://doi.org/10.1073/pnas.212515999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Franco G, Usai A, Piccardi M, Cateni P, Palmeri M, Pollina LE, Gaeta R, Marmorino F, Cremolini C, Dente L, Massolo A, Raffa V, Morelli L (2022) Zebrafish patient-derived xenograft model to predict treatment outcomes of colorectal cancer patients. Biomedicines 10(7):1474. https://doi.org/10.3390/biomedicines10071474

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinarello A, Licciardello G, Fontana CM, Tiso N, Argenton F, Valle LD (2020) Glucocorticoid receptor activities in the zebrafish model: a review. J Endocrinol 247(3):R63–R82. https://doi.org/10.1530/JOE-20-0173

Article  CAS  PubMed  Google Scholar 

El-Gabalawy H, Luenther LC, Bernstein CN (2010) Epidemiology of immune-mediated inflammatory diseases: incidence, prevalence, natural history, and comorbidities. J Rheumatol Suppl 85:2–10. https://doi.org/10.3899/jrheum.091461

Article  PubMed  Google Scholar 

Elks PM, Van Eeden FJ, Dixon G, Wang X, Reyes-Aldasoro CC, Ingham PW, Whyte MKB, Walmsley SR, Renshaw SA (2011) Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood 118(3):712–722. https://doi.org/10.1182/blood-2010-12-324186. (Epub 2011 May 9)

Article  CAS  PubMed  Google Scholar 

Esancy K, Condon L, Feng J, Kimball C, Curtright A, Dhaka A (2018) A zebrafish and mouse model for selective pruritus via direct activation of TRPA1. Elife 21(7):e32036. https://doi.org/10.7554/eLife.32036.PMID:29561265;PMCID:PMC5912907

Article  Google Scholar 

Ferrero G, Gomez E, Lyer S, Rovira M, Miserocchi M, Langenau DM, Bertrand JY, Wittamer V (2020) The macrophage-expressed gene (mpeg) 1 identifies a subpopulation of B cells in the adult zebrafish. J Leukocyte Biol. https://doi.org/10.1002/JLB.1A1119-223R

Article  PubMed  Google Scholar 

Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P (2013) The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol. https://doi.org/10.3389/fimmu.2013.00028

Article  PubMed  PubMed Central  Google Scholar 

Flores E, Dutta S, Bosserman R, van Hoof A, Krachler A-M (2023) Colonization of larval zebrafish (Danio rerio) with adherent-invasive Escherichia coli prevents recovery of the intestinal mucosa from drug-induced enterocolitis. Msphere. 8(6):e0051223. https://doi.org/10.1128/msphere.00512-23

Article  CAS  PubMed  Google Scholar 

Frantz WT, Ceol CJ (2022) Research techniques made simple: zebrafish models for human dermatologic disease. J Invest Dermatol 142(3 Pt A):499-506.e1. https://doi.org/10.1016/j.jid.2021.10.016. (PMID: 35184798)

Article  CAS  PubMed  Google Scholar 

Gericke J, Harvey BH, Pretorius L, Ollewagen T, Benecke RM, Smith C (2024) Sceletium tortuosum-derived mesembrine significantly contributes to the anxiolytic effect of Zembrin®, but its anti-depressant effect may require synergy of multiple plant constituents. J Ethnopharmacol 319(Pt 1):117113. https://doi.org/10.1016/j.jep.2023.117113(Epub2023Sep1.PMID:37660956)

Article  CAS  PubMed  Google Scholar 

Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jönsson ME, Nelson DR, Stegeman JJ (2010) Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genom 18(11):643. https://doi.org/10.1186/1471-2164-11-643. (PMID:21087487;PMCID:PMC3012610)

Article  CAS  Google Scholar 

Gonzalez-Nunez V, Rodríguez RE (2009) The zebrafish: a model to study the endogenous mechanisms of pain. ILAR J 50(4):373–386. https://doi.org/10.1093/ilar.50.4.373. (PMID: 19949253)

Article  CAS  PubMed  Google Scholar 

Guo L, Dai W, Xu Z, Liang Q, Miller ET, Li S, Gao X, Baldwin MW, Chai R, Li Q (2022) Evolution of brain-expressed biogenic amine receptors into olfactory trace amine-associated receptors. Mol Biol Evol 39(3):msac006. https://doi.org/10.1093/molbev/msac006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Häberlein F, Mingardo E, Merten N, Schulze Köhling NK, Reinoß P, Simon K, Japp A, Nagarajan B, Schrage R, Pegurier C, Gillard M, Monk KR, Odermatt B, Kostenis E, Gomeza J (2022) Humanized zebrafish as a tractable tool for in vivo evaluation of pro-myelinating drugs. Cell Chem Biol 29(10):1541-1555.e7. https://doi.org/10.1016/j.chembiol.2022.08.007. (Epub 2022 Sep 19 PMID: 36126653)

Article  CAS  PubMed  Google Scholar 

Hall CJ, Boyle RH, Sun X, Wicker SM, Misa JP, Krissansen GW, Print CG, Crosier KE, Crosier PS (2014a) Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production. Nat Commun 23(5):3880. https://doi.org/10.1038/ncomms4880

Article  CAS  Google Scholar 

Hall CJ, Wicker SM, Chien AT, Tromp A, Lawrence LM, Sun X, Krissansen GW, Crosier KE, Crosier PS (2014b) Repositioning drugs for inflammatory disease-fishing for new anti-inflammatory agents. Dis Model Mech 7(9):1069–1081. https://doi.org/10.1242/dmm.016873

Article  CAS 

留言 (0)

沒有登入
gif