Redefining the significance of quinoline containing compounds as potent VEGFR-2 inhibitors for cancer therapy

Reang J, Sharma PC, Thakur VK, Majeed J. Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. Biomol. 2021;11:1130.

CAS  Google Scholar 

Sharma D, Sharma V, Sharma A, Goyal R, Tonk RK, Thakur VK, et al. Green chemistry approaches for thiazole containing compounds as a potential scaffold for cancer therapy. Sustain Chem Pharm. 2021;23:100496.

Article  CAS  Google Scholar 

Sharma PC, Sharma D, Sharma A, Bhagat M, Ola M, Thakur VK, et al. Recent advances in microbial toxin-related strategies to combat cancer. Semin Cancer Biol. 2022;86:753–68.

Article  CAS  PubMed  Google Scholar 

Sharma A, Sharma D, Saini N, Sharma SV, Thakur VK, Goyal RK, et al. Recent advances in synthetic strategies and SAR of thiazolidin-4-one containing molecules in cancer therapeutics. Cancer Metastasis Rev. 2023;42:847–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song F, Hu B, Cheng J-W, Sun Y-F, Zhou K-Q, Wang P-X, et al. Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma. Cell Death Dis. 2020;11:573.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei L, Sun C, Zhang Y, Han N, Sun S. miR-503-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-A. Gene Ther. 2022;29:28–40.

Article  CAS  PubMed  Google Scholar 

Lian L, Li X-L, Xu M-D, Li X-M, Wu M-Y, Zhang Y, et al. VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer. 2019;19:183.

Article  PubMed  PubMed Central  Google Scholar 

Englisch A, Altvater B, Kailayangiri S, Hartmann W, Rossig C. VEGFR2 as a target for CAR T cell therapy of Ewing sarcoma. Pediatr Blood Cancer. 2020;67:e28313.

Article  CAS  PubMed  Google Scholar 

Wang L, Ge H, Peng L, Wang B. A meta-analysis of the relationship between VEGFR2 polymorphisms and atherosclerotic cardiovascular diseases. Clin Cardiol. 2019;42:860–5.

Article  PubMed  PubMed Central  Google Scholar 

Luck R, Urban S, Karakatsani A, Harde E, Sambandan S, Nicholson L, et al. VEGF/VEGFR2 signaling regulates hippocampal axon branching during development. Elife. 2019;8:e49818.

Article  PubMed  PubMed Central  Google Scholar 

Karaman S, Leppänen V-M, Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development. 2018;145:dev151019.

Article  PubMed  Google Scholar 

Volz C, Breid S, Selenz C, Zaplatina A, Golfmann K, Meder L, et al. Inhibition of Tumor VEGFR2 Induces Serine 897 EphA2-Dependent Tumor Cell Invasion and Metastasis in NSCLC. Cell Rep. 2020;31:107568.

Article  CAS  PubMed  Google Scholar 

Zhong M, Li N, Qiu X, Ye Y, Chen H, Hua J, et al. TIPE regulates VEGFR2 expression and promotes angiogenesis in colorectal cancer. Int J Biol Sci. 2020;16:272–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pauli FP, Martins JR, Paschoalin T, Ionta M, Barbosa MLC, Barreiro EJ. Novel VEGFR-2 inhibitors with an N-acylhydrazone scaffold. Arch Pharm. 2020;353:e2000130.

Article  Google Scholar 

Fan H, Wei D, Zheng K, Qin X, Yang L, Yang Y, et al. Discovery of Dioxino[2,3-f]quinazoline derivative VEGFR-2 inhibitors exerting significant antipro-liferative activity in HUVECs and mice. Eur J Med Chem. 2019;175:349–56.

Article  CAS  PubMed  Google Scholar 

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.

Article  CAS  PubMed  Google Scholar 

Ji L, Wu M, Li Z. Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway. Molecules. 2018;23:2047.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Bove AM, Simone G, Ma B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front cell Dev Biol. 2020;8:599281.

Article  PubMed  PubMed Central  Google Scholar 

Modi SJ, Kulkarni VM. Vascular Endothelial Growth Factor Receptor (VEGFR-2)/KDR Inhibitors: Medicinal Chemistry Perspective. Med Drug Discov. 2019;2:100009.

Article  Google Scholar 

Zhang Y, Zhang M, Wang Y, Fan Y, Chen X, Yang Y, et al. Protein-ligand interaction-guided discovery of novel VEGFR-2 inhibitors. J Biomol Struct Dyn. 2020;38:2559–74.

Article  CAS  PubMed  Google Scholar 

Ding H, Xing F, Zou L, Zhao L. QSAR analysis of VEGFR-2 inhibitors based on machine learning, Topomer CoMFA and molecule docking. BMC Chem. 2024;18:59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nippu BN, Kumaraswamy HM, Satyanarayan ND. Exploration of Heterocyclic Molecules Inhibiting Angiogenesis via VEGF Pathway Targeting VEGFR-2: An In Silico Approach. Proc Natl Acad Sci India Sect B Biol Sci. 2024;94:75–86.

Article  CAS  Google Scholar 

Weyesa A, Mulugeta E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: a review. RSC Adv. 2020;10:20784–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matada BS, Pattanashettar R, Yernale NG. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg Med Chem. 2021;32:115973.

Article  CAS  PubMed  Google Scholar 

Martorana A, La Monica G, Lauria A. Quinoline-Based Molecules Targeting c-Met, EGF, and VEGF Receptors and the Proteins Involved in Related Carcinogenic Pathways. Molecules. 2020;25:E4279.

Article  Google Scholar 

Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, et al. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals. 2023;16:299.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, et al. A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem. 2015;97:871–910.

Article  CAS  PubMed  Google Scholar 

Aziz MA, Serya RAT, Lasheen DS, Abdel-Aziz AK, Esmat A, Mansour AM, et al. Discovery of Potent VEGFR-2 Inhibitors based on Furopyrimidine and Thienopyrimidne Scaffolds as Cancer Targeting Agents. Sci Rep. 2016;6:24460.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alanazi MM, Eissa IH, Alsaif NA, Obaidullah AJ, Alanazi WA, Alasmari AF, et al. Design, synthesis, docking, ADMET studies, and anticancer evaluation of new 3-methylquinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem. 2021;36:1760–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Adl K, Ibrahim M-K, Khedr F, Abulkhair HS, Eissa IH. N-Substituted-4-phenylphthalazin-1-amine-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluation studies. Arch Pharm (Weinheim). 2021;354:e2000219.

Article  PubMed  Google Scholar 

Alanazi MM, Mahdy HA, Alsaif NA, Obaidullah AJ, Alkahtani HM, Al-Mehizia AA, et al. New bis([1,2,4]triazolo)[4,3-a:3’,4’-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorg Chem. 2021;112:104949.

Saleh NM, El-Gaby MSA, El-Adl K, Abd El-Sattar NEA. Design, green synthesis, molecular docking and anticancer evaluations of diazepam bearing sulfonamide moieties as VEGFR-2 inhibitors. Bioorg Chem. 2020;104:104350.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif