Docking-guided exploration of the anti-flt3 potential of isoindigo derivatives towards potential treatments of acute myeloid leukemia

Davies RJ, Pierce AC, Forster C, Grey R, Xu J, Arnost M, et al. Design, Synthesis, and Evaluation of a Novel Dual Fms-Like Tyrosine Kinase 3/Stem Cell Factor Receptor (FLT3/c-KIT) Inhibitor for the Treatment of Acute Myelogenous Leukemia. J Med Chem. 2011;54:7184–92.

Article  CAS  PubMed  Google Scholar 

Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Mol Cancer Ther. 2017;16:991–1001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abutayeh RF, Taha MO. Discovery of novel Flt3 inhibitory chemotypes through extensive ligand-based and new structure-based pharmacophore modelling methods. J Mol Graph Model. 2019;88:128–51.

Article  CAS  PubMed  Google Scholar 

Grunwald MR, Levis MJ. FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol. 2013;97:683–94.

Article  CAS  PubMed  Google Scholar 

Chen Y, Pan Y, Guo Y, Zhao W, Ho WT, Wang J, et al. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investig. 2017;4:48–48.

Article  PubMed  PubMed Central  Google Scholar 

Smith CC, Lin K, Stecula A, Sali A, Shah NP. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia. 2015;29:2390–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33:299–312.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010;116:5089–102.

Article  CAS  PubMed  Google Scholar 

Perez M, Blankenhorn J, Murray KJ, Parker LL. High-throughput Identification of FLT3 Wild-type and Mutant Kinase Substrate Preferences and Application to Design of Sensitive In Vitro Kinase Assay Substrates. Mol Cell Proteom. 2019;18:477–89.

Article  CAS  Google Scholar 

Nguyen B, Williams AB, Young DJ, Ma H, Li L, Levis M, et al. FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors. Oncotarget. 2017;8:10931–44.

Article  PubMed  PubMed Central  Google Scholar 

DeStefano CB, Hourigan CS. Personalizing initial therapy in acute myeloid leukemia: incorporating novel agents into clinical practice. Ther Adv Hematol. 2018;9:109–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sassatelli M, Bouchikhi F, Messaoudi S, Anizon F, Debiton E, Barthomeuf C, et al. Synthesis and antiproliferative activities of diversely substituted glycosyl-isoindigo derivatives. Eur J Med Chem. 2006;41:88–100.

Article  CAS  PubMed  Google Scholar 

Sassatelli M, Bouchikhi F, Aboab B, Anizon F, Fabbro D, Prudhomme M, et al. In-vitro antiproliferative activities and kinase inhibitory potencies of glycosyl-isoindigo derivatives. Anticancer Drugs. 2007;18:1069–74.

Article  CAS  PubMed  Google Scholar 

Bouchikhi F, Anizon F, Moreau P. Synthesis, kinase inhibitory potencies and in vitro antiproliferative activity of isoindigo and 7′-azaisoindigo derivatives substituted by Sonogashira cross-coupling. Eur J Med Chem. 2009;44:2705–10.

Article  CAS  PubMed  Google Scholar 

Bouchikhi F, Anizon F, Moreau P. Synthesis and antiproliferative activities of isoindigo and azaisoindigo derivatives. Eur J Med Chem. 2008;43:755–62.

Article  CAS  PubMed  Google Scholar 

Wee XK, Yeo WK, Zhang B, Tan VBC, Lim KM, Tay TE, et al. Synthesis and evaluation of functionalized isoindigos as antiproliferative agents. Bioorg Med Chem. 2009;17:7562–71.

Article  CAS  PubMed  Google Scholar 

Wee XK, Yang T, Go ML. Exploring the Anticancer Activity of Functionalized Isoindigos: Synthesis, Drug-like Potential, Mode of Action and Effect on Tumor-Induced Xenografts. ChemMedChem. 2012;7:777–91.

Article  CAS  PubMed  Google Scholar 

Zhao P, Li Y, Gao G, Wang S, Yan Y, Zhan X, et al. Design, synthesis and biological evaluation of N-alkyl or aryl substituted isoindigo derivatives as potential dual cyclin-dependent kinase 2 (CDK2)/glycogen synthase kinase 3β (GSK-3β) phosphorylation inhibitors. Eur J Med Chem. 2014;86:165–74.

Article  CAS  PubMed  Google Scholar 

Saleh AM, Al-As’ad R, El-Abadelah M, Sabri S, Zahra J, Alaskar A, et al. Synthesis and Biological Evaluation of New Pyridone-Annelated Isoindigos as Anti-Proliferative Agents. Molecules. 2014;19:13076–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saleh AM, El-Abadelah MM, Aziz MA, Taha MO, Nasr A, Rizvi SAA. Antiproliferative activity of the isoindigo 5′-Br in HL-60 cells is mediated by apoptosis, dysregulation of mitochondrial functions and arresting cell cycle at G0/G1 phase. Cancer Lett. 2015;361:251–61.

Article  CAS  PubMed  Google Scholar 

Saleh AM, Aljada A, El-Abadelah MM, Taha MO, Sabri SS, Zahra JA, et al. The Anticancer Activity of the Substituted Pyridone-Annelated Isoindigo (5’-Cl) Involves G0/G1 Cell Cycle Arrest and Inactivation of CDKs in the Promyelocytic Leukemia Cell Line HL-60. Cell Physiol Biochem. 2015;35:1943–57.

Article  CAS  PubMed  Google Scholar 

Saleh AM, Aljada A, El-Abadelah MM, Sabri SS, Zahra JA, Nasr A. et al. The Pyridone-Annelated Isoindigo (5‘-Cl) Induces Apoptosis, Dysregulation Mitochondria Formation ROS Leuk HL-60 Cells.Cell Physiol Biochem. 2015;35:1958–74.

Article  CAS  PubMed  Google Scholar 

Huang M, Lin H-S, Lee YS, Ho PC. Evaluation of meisoindigo, an indirubin derivative: in vitro antileukemic activity and in vivo pharmacokinetics. Int J Oncol. 2014;45:1724–34.

Article  CAS  PubMed  Google Scholar 

Choi SJ, Moon MJ, Lee SD, Choi S-U, Han S-Y, Kim Y-C. Indirubin derivatives as potent FLT3 inhibitors with anti-proliferative activity of acute myeloid leukemic cells. Bioorg Med Chem Lett. 2010;20:2033–7.

Article  CAS  PubMed  Google Scholar 

Choi YJ, Park J, Choi H, Oh S-J, Park J-H, Park M, et al. PLM-101 is a novel and potent FLT3/RET inhibitor with less adverse effects in the treatment of acute myeloid leukemia. Biomed Pharmacother. 2023;165:115066.

Article  CAS  PubMed  Google Scholar 

Brown DM, Nisbet I. Compositions and methods to improve the therapeutic benefit of indirubin and analogs thereof, including meisoindigo, 2020, US-20200206188-A

Zhang H. A green synthesis of Indolo[2,3-b]Quinoxaline Derivatives. J Chem Res. 2014;38:705–9.

Article  CAS  Google Scholar 

Luo J, Gao S, Ma Y, Ge G. Palladium-catalyzed oxidation of Indoles to Isatins by tert-Butyl Hydroperoxide. Synlett. 2018;29:969–73.

Article  CAS  Google Scholar 

Sawai Y, Yabe O, Nakaoka K, Ikemoto T. Process development of a CRF1 receptor antagonist based on the selective chlorination of a benzimidazolone via chlorine migration. Org Process Res Dev. 2017;21:222–30.

Article  CAS  Google Scholar 

Wang Y, Cheng X, Zhan Z, Ma X, Nie R, Hai L, et al. IBX-promoted domino reaction of α-hydroxy amides: a facile one-pot synthesis of isatins. RSC Adv. 2016;6:2870–4.

Article  CAS  Google Scholar 

Li H, Zhang X, Tan J, Chen L, Liu H, Luo X, et al. Design, synthesis, antitumor evaluations and molecular modeling studies of novel 3,5-substituted indolin-2-one derivatives. Acta Pharmacol Sin. 2007;28:140–52.

Article  PubMed 

留言 (0)

沒有登入
gif