Reversible in-situ assembly of PROTACs using iminoboronate conjugation

Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 2001;98:8554–9. https://doi.org/10.1073/pnas.141230798

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li K, Crews CM. PROTACs: past, present and future. Chem Soc Rev. 2022;51:5214–36. https://doi.org/10.1039/d2cs00193d

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lebraud H, Wright DJ, Johnson CN, Heightman TD. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci. 2016;2:927–34. https://doi.org/10.1021/acscentsci.6b00280

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gui W, Giardina SF, Balzarini M, Barany F, Kodadek T. Reversible assembly of proteolysis targeting chimeras. ACS Chem Biol. 2023;18:1582–93. https://doi.org/10.1021/acschembio.3c00199

Article  CAS  PubMed  Google Scholar 

Pasieka A, Diamanti E, Uliassi E, Laura Bolognesi M. Click chemistry and targeted degradation: a winning combination for medicinal chemists? ChemMedChem. 2023;18:e202300422. https://doi.org/10.1002/cmdc.202300422

Article  CAS  PubMed  Google Scholar 

Tomoshige S, Ishikawa M. In vivo synthetic chemistry of proteolysis targeting chimeras (PROTACs). Bioorg Med Chem. 2021;41:116221. https://doi.org/10.1016/j.bmc.2021.116221

Article  CAS  PubMed  Google Scholar 

Yang C, Tripathi R, Wang BH. Click chemistry in the development of PROTACs. RSC Chem Biol. 2023;5:189–97. https://doi.org/10.1039/d3cb00199g

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kondengadan SM, Bansal S, Yang C, Liu D, Fultz Z, Wang B. Click chemistry and drug delivery: a bird’s-eye view. Acta Pharm Sin B. 2023;13:1990–2016. https://doi.org/10.1016/j.apsb.2022.10.015

Article  CAS  PubMed  Google Scholar 

Cal PM, Frade RF, Chudasama V, Cordeiro C, Caddick S, Gois PM. Targeting cancer cells with folic acid-iminoboronate fluorescent conjugates. Chem Commun. 2014;50:5261–3. https://doi.org/10.1039/c3cc47534d

Article  CAS  Google Scholar 

Draganov AB, Wang K, Holmes J, Damera K, Wang D, Dai C, et al. Click with a boronic acid handle: a neighboring group-assisted click reaction that allows ready secondary functionalization. Chem Commun. 2015;51:15180–3. https://doi.org/10.1039/c5cc05890b

Article  CAS  Google Scholar 

Bandyopadhyay A, Gao J. Iminoboronate formation leads to fast and reversible conjugation chemistry of α-nucleophiles at neutral pH. Chemistry. 2015;21:14748–52. https://doi.org/10.1002/chem.201502077

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cambray S, Gao J. Versatile bioconjugation chemistries of ortho-boronyl aryl ketones and aldehydes. Acc Chem Res. 2018;51:2198–206. https://doi.org/10.1021/acs.accounts.8b00154

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chio TI, Gu H, Mukherjee K, Tumey LN, Bane SL. Site-specific bioconjugation and multi-bioorthogonal labeling via rapid formation of a boron-nitrogen heterocycle. Bioconjugate Chem. 2019;30:1554–64. https://doi.org/10.1021/acs.bioconjchem.9b00246

Article  CAS  Google Scholar 

Pang Y, Huang M, Fan Y, Yeh HW, Xiong Y, Ng HL, et al. Development, characterization, and structural analysis of a genetically encoded red fluorescent peroxynitrite biosensor. ACS Chem Biol. 2023;18:1388–97. https://doi.org/10.1021/acschembio.3c00139

Article  CAS  PubMed  Google Scholar 

Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem Biol. 2015;10:1831–7. https://doi.org/10.1021/acschembio.5b00442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ody BK, Zhang J, Nelson SE, Xie Y, Liu R, Dodd CJ, et al. Synthesis and evaluation of cereblon-recruiting HaloPROTACs. Chembiochem. 2023;24:e202300498. https://doi.org/10.1002/cbic.202300498

Article  CAS  PubMed  Google Scholar 

Tovell H, Testa A, Maniaci C, Zhou H, Prescott AR, Macartney T, et al. Rapid and reversible knockdown of endogenously tagged endosomal proteins via an optimized HaloPROTAC degrader. ACS Chem Biol. 2019;14:882–92. https://doi.org/10.1021/acschembio.8b01016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarott RC, You I, Li YD, Toenjes ST, Donovan KA, Seo P, et al. Chemical specification of E3 ubiquitin ligase engagement by cysteine-reactive chemistry. J Am Chem Soc. 2023;145:21937–44. https://doi.org/10.1021/jacs.3c06622

Article  CAS  PubMed  Google Scholar 

Li K, Weidman C, Gao J. Dynamic formation of imidazolidino boronate enables design of cysteine-responsive peptides. Org Lett. 2018;20:20–23. https://doi.org/10.1021/acs.orglett.7b03116

Article  CAS  PubMed  Google Scholar 

Li KC, Wang WJ, Gao JM. Fast and stable N-terminal cysteine modification through thiazolidino boronate mediated acyl transfer. Angew Chem Int Ed. 2020;59:14246–50. https://doi.org/10.1002/anie.202000837

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif