Amyloid-independent pathogenesis for Alzheimer’s disease: implications for drug design

Revi M. Alzheimer’s Disease Therapeutic Approaches. Adv Exp Med Biol. 2020;1195:105–16.

Article  CAS  PubMed  Google Scholar 

Liu KY, Howard R. Can we learn lessons from the FDA’s approval of aducanumab? Nat Rev Neurol. 2021;17:715–22.

Article  PubMed  Google Scholar 

van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in Early Alzheimer’s Disease. N Eng J Med. 2022;388:1631–2.

Google Scholar 

Guiloff AE, Rudge P. Amyloid antibody therapy for early-stage Alzheimer’s disease: a critical review of three recent trials. J Neurol. 2024. https://doi.org/10.1007/s00415-024-12361-w.

Høilund-Carlsen PF, Alavi A, Castellani RJ, Neve RL, Perry G, Revheim ME et al. Alzheimer’s Amyloid Hypothesis and Antibody Therapy: Melting Glaciers? Int J Mol Sci. 2024;25. https://doi.org/10.3390/ijms25073892.

Kepp KP, Sensi SL, Johnsen KB, Barrio JR, Høilund-Carlsen PF, Neve RL, et al. The Anti-Amyloid Monoclonal Antibody Lecanemab: 16 Cautionary Notes. J Alzheimer Dis. 2023;94:497–507.

Article  CAS  Google Scholar 

Mullard A. Landmark Alzheimer’s drug approval confounds research community. Nature. 2021;594:309–10.

Article  CAS  PubMed  Google Scholar 

Couzin-Frankel J. Alzheimer’s drug approval gets a mixed reception. Science. 2023;379:126–7.

Article  CAS  PubMed  Google Scholar 

Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8.

Article  CAS  PubMed  Google Scholar 

Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6:487–98.

Article  CAS  PubMed  Google Scholar 

Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, et al. Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature. 1991;353:844–6.

Article  CAS  PubMed  Google Scholar 

Cole SL, Vassar R. The role of APP processing by BACE1, the β-secretase, in Alzheimer’s disease pathophysiology. J Biol Chem. 2008;283:29621–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolfe MS. Structure and Function of the γ-Secretase Complex. Biochemistry. 2019: https://doi.org/10.1021/acs.biochem.9b00401.

Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.

Article  CAS  PubMed  Google Scholar 

Jarrett JT, Berger EP, Lansbury PT Jr. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry. 1993;32:4693–7.

Article  CAS  PubMed  Google Scholar 

Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375:754–60.

Article  CAS  PubMed  Google Scholar 

Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376:775–8.

Article  CAS  PubMed  Google Scholar 

Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269:973–7.

Article  CAS  PubMed  Google Scholar 

Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med. 1997;3:67–72.

Article  CAS  PubMed  Google Scholar 

Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, et al. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron. 1996;17:1005–13.

Article  CAS  PubMed  Google Scholar 

Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med. 1996;2:864–70.

Article  CAS  PubMed  Google Scholar 

De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998;391:387–90.

Article  PubMed  Google Scholar 

Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B. Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol. 2000;2:461–2.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, et al. Presenilins are required for γ-secretase cleavage of β-APP and transmembrane cleavage of Notch-1. Nat Cell Biol. 2000;2:463–5.

Article  CAS  PubMed  Google Scholar 

Wolfe MS, Xia W, Moore CL, Leatherwood DD, Ostaszewski B, Donkor IO, et al. Peptidomimetic probes and molecular modeling suggest Alzheimer’s γ-secretases are intramembrane-cleaving aspartyl proteases. Biochemistry. 1999;38:4720–7.

Article  CAS  PubMed  Google Scholar 

Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature. 1999;398:513–7.

Article  CAS  PubMed  Google Scholar 

Esler WP, Kimberly WT, Ostaszewski BL, Diehl TS, Moore CL, Tsai J-Y, et al. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat Cell Biol. 2000;2:428–34.

Article  CAS  PubMed  Google Scholar 

Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature. 2000;405:689–94.

Article  CAS  PubMed  Google Scholar 

De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-Secretase complex. Neuron. 2003;38:9–12.

Article  PubMed  Google Scholar 

Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Eng J Med. 2013;369:341–50.

Article  CAS  Google Scholar 

Coric V, Salloway S, van Dyck CH, Dubois B, Andreasen N, Brody M, et al. Targeting Prodromal Alzheimer Disease With Avagacestat: A Randomized Clinical Trial. JAMA Neurol. 2015;72:1324–33.

Article  PubMed  Google Scholar 

Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VL, et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci. 2015;16:564–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14:837–42.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif