The effect of GLP-1R agonists on the medical triad of obesity, diabetes, and cancer

Iijima, T., Shibuya, M., Ito, Y., & Terauchi, Y. (2023). Effects of switching from liraglutide to semaglutide or dulaglutide in patients with type 2 diabetes: A randomized controlled trial. Nature Reviews Disease Primers , 14. https://doi.org/10.1111/jdi.14000.

Kadowaki, T., Isendahl, J., Khalid, U., Lee, S. Y., Nishida, T., Ogawa, W., Tobe, K., Yamauchi, T., & Lim, S. (2022). Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an east Asian population (step 6): A randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diabetes Endocrinol, 10, 193–206. https://doi.org/10.1016/S2213-8587(22)00008-0

Article  CAS  PubMed  Google Scholar 

Pérez Rodrigo, C. (2013). Current mapping of obesity. Nutricion Hospitalaria, 28(Suppl 5), 21–31. https://doi.org/10.3305/NH.2013.28.SUP5.6915.

Article  PubMed  Google Scholar 

Chooi, Y. C., Ding, C., & Magkos, F. (2019). The epidemiology of obesity. Metabolism, 92. https://doi.org/10.1016/j.metabol.2018.09.005.

Männistö, S., Kontto, J., Kataja-Tuomola, M., Albanes, D., & Virtamo, J. (2010). High processed meat consumption is a risk factor of type 2 diabetes in the alpha-tocopherol, beta-carotene cancer prevention study. British Journal of Nutrition, 103. https://doi.org/10.1017/S0007114510000073.

Ong, K. L., Stafford, L. K., McLaughlin, S. A., Boyko, E. J., Vollset, S. E., Smith, A. E., Dalton, B. E., Duprey, J., Cruz, J. A., Hagins, H., et al. (2023). Global, Regional, and National Burden of Diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of Disease Study 2021. The Lancet, 402. https://doi.org/10.1016/S0140-6736(23)01301-6.

Buzzetti, R., Maddaloni, E., Gaglia, J., Leslie, R. D., Wong, F. S., & Boehm, B. O. (2022). Adult-onset autoimmune diabetes. Nature Reviews Clinical Oncology, 8. https://doi.org/10.1038/s41572-022-00390-6.

Scully, T., Ettela, A., LeRoith, D., Gallagher, E. J., & Obesity (2021). Type 2 diabetes, and cancer risk. Frontiers in Oncology 10.

Wirth, A., Wabitsch, M., & Hauner, H. (2014). The prevention and treatment of obesity. Dtsch Arztebl Int, 111. https://doi.org/10.3238/arztebl.2014.0705.

Avgerinos, K. I., Spyrou, N., Mantzoros, C. S., & Dalamaga, M. (2019). Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism, 92, 121–135. https://doi.org/10.1016/J.METABOL.2018.11.001

Article  CAS  PubMed  Google Scholar 

Preuss, H. G., Bagchi, M., Bagchi, D., & Kaats, G. R. (2010). Obesity and cancer. The Oncologist, 15, 197–204. https://doi.org/10.1634/THEONCOLOGIST.2009-0285

Article  Google Scholar 

Kim, D. S., Scherer, P. E., & Obesity. (2021). Diabetes, and increased cancer progression. Diabetes Metab J, 45.

López-Suárez, A. (2019). Burden of cancer attributable to obesity, type 2 diabetes and associated risk factors. Metabolism 92.

Buhrmann, C., Shayan, P., Brockmueller, A., & Shakibaei, M. (2020). Resveratrol suppresses cross-talk between colorectal cancer cells and stromal cells in multicellular tumor microenvironment: A bridge between in vitro and in vivo tumor microenvironment study. Molecules, 25. https://doi.org/10.3390/molecules25184292.

Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867. https://doi.org/10.1038/NATURE01322.

Islami, F., Goding Sauer, A., Gapstur, S. M., & Jemal, A. (2019). Proportion of cancer cases attributable to excess body weight by US state, 2011–2015. JAMA Oncology, 5. https://doi.org/10.1001/jamaoncol.2018.5639.

Pati, S., Irfan, W., Jameel, A., Ahmed, S., & Shahid, R. K. (2023). Obesity and cancer: A current overview of epidemiology, pathogenesis, outcomes, and management. Cancers (Basel) 15.

De Pergola, G., & Silvestris, F. (2013). Obesity as a major risk factor for cancer. J Obes 2013.

Bhardwaj, P., Iyengar, N. M., Zahid, H., Carter, K. M., Byun, D. J., Choi, M. H., Sun, Q., Savenkov, O., Louka, C., Liu, C., et al. (2023). Obesity promotes breast epithelium DNA damage in women carrying a germline mutation in BRCA1 or BRCA2. Science Translational Medicine, 15. https://doi.org/10.1126/scitranslmed.ade1857.

Harreiter, J., Roden, M., Diabetes, & Mellitus—Definition (2019). Classification, diagnosis, screening and prevention (Update 2019). Wien Klin Wochenschr, 131. https://doi.org/10.1007/s00508-019-1450-4.

Nolen, L. (2022). The effect of glucose on rapid cancer cell proliferation & waste. Oncology Times, 44. https://doi.org/10.1097/01.cot.0000892616.48647.47.

Khajah, M. A., Khushaish, S., & Luqmani, Y. A. (2022). Glucose deprivation reduces proliferation and motility, and enhances the anti-proliferative effects of paclitaxel and doxorubicin in breast cell lines in Vitro. PLoS One, 17. https://doi.org/10.1371/journal.pone.0272449.

Lin, C. Y., Lee, C. H., Huang, C. C., Lee, S. T., Guo, H. R., & Su, S. (2015). Bin impact of high glucose on metastasis of colon cancer cells. World Journal of Gastroenterology, 21. https://doi.org/10.3748/wjg.v21.i7.2047.

Derr, R. L., Ye, X., Islas, M. U., Desideri, S., Saudek, C. D., & Grossman, S. A. (2009). Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. Journal of Clinical Oncology, 27. https://doi.org/10.1200/JCO.2008.19.1098.

Rahn, S., Zimmermann, V., Viol, F., Knaack, H., Stemmer, K., Peters, L., Lenk, L., Ungefroren, H., Saur, D., Schäfer, H., et al. (2018). Diabetes as risk factor for pancreatic cancer: Hyperglycemia promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Letters, 415. https://doi.org/10.1016/j.canlet.2017.12.004.

Qiang, J. K., Lipscombe, L. L., & Lega, I. C. (2020). Association between diabetes, obesity, aging, and cancer: Review of recent literature. Translation Cancer Research 9.

Granja, S., Pinheiro, C., Reis, R., Martinho, O., & Baltazar, F. (2015). Glucose addiction in cancer therapy: Advances and drawbacks. Current Drug Metabolism, 16. https://doi.org/10.2174/1389200216666150602145145.

Brockmueller, A., Sameri, S., Liskova, A., Zhai, K., Varghese, E., Samuel, S. M., Büsselberg, D., Kubatka, P., & Shakibaei, M. (2021). Resveratrol’s anti-cancer effects through the modulation of tumor glucose metabolism. Cancers (Basel), 13, 1–35. https://doi.org/10.3390/CANCERS13020188

Article  Google Scholar 

Samec, M., Liskova, A., Koklesova, L., Samuel, S. M., Zhai, K., Buhrmann, C., Varghese, E., Abotaleb, M., Qaradakhi, T., Zulli, A. (2020). Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA Journal 11.

Klil-Drori, A. J., Azoulay, L., Pollak, M. N., & Cancer. (2017). Obesity, diabetes, and antidiabetic drugs: Is the fog clearing? Nature Reviews Clinical Oncology, 14, 85–99. https://doi.org/10.1038/NRCLINONC.2016.120

Article  CAS  PubMed  Google Scholar 

Slawinski, C. G. V., Barriuso, J., Guo, H., & Renehan, A. G. (2020). Obesity and cancer treatment outcomes: Interpreting the complex evidence. Clinical Oncology (Royal College of Radiologists), 32, 591–608. https://doi.org/10.1016/J.CLON.2020.05.004

Article  CAS  Google Scholar 

Vucenik, I., Stains, J. P., Obesity, & Risk, C. (2012). Evidence, mechanisms, and recommendations. Annals of the New York Academy of Sciences, 1271, 37–43. https://doi.org/10.1111/J.1749-6632.2012.06750.X.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rowbottom, L., Stinson, J., McDonald, R., Emmenegger, U., Cheng, S., Lowe, J., Giotis, A., Cheon, P., Chow, R., Pasetka, M., et al. (2015). Retrospective review of the incidence of monitoring blood glucose levels in patients receiving corticosteroids with systemic anticancer therapy. Ann Palliat Med, 4, 70–77. https://doi.org/10.3978/J.ISSN.2224-5820.2015.04.07.

Article  PubMed  Google Scholar 

Shahid, R. K., Ahmed, S., Le, D., & Yadav, S. (2021). Diabetes and cancer: Risk, challenges, management and outcomes. Cancers (Basel) 13.

Zhu, L., Zhou, J., Pan, Y., Lv, J., Liu, Y., Yu, S., & Zhang, Y. (2019). Glucagon-like peptide-1 receptor expression and its functions are regulated by androgen. Biomedicine and Pharmacotherapy, 120. https://doi.org/10.1016/j.biopha.2019.109555.

Drucker, D. J. (2022). GLP-1 physiology informs the pharmacotherapy of obesity. Molecular Metabolism 57.

Nomiyama, T., & Yanase, T. (2016). GLP-1 receptor agonist as treatment for cancer as well as diabetes: Beyond blood glucose control. Expert Review Endocrinology Metabolism, 1–8. https://doi.org/10.1080/17446651.2016.1191349.

Koehler, J. A., Kain, T., Drucker, D. J., & Glucagon-Like. (2011). Peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinology, 152, 3362–3372. https://doi.org/10.1210/en.2011-1201

Article  CAS  PubMed  Google Scholar 

Wang, L., Wang, W., Kaelber, D. C., Xu, R., & Berger, N. A. (2024). GLP-1 receptor agonists and colorectal cancer risk in drug-naive patients with type 2 diabetes, with and without overweight/obesity. JAMA Oncology, 10, 256. https://doi.org/10.1001/jamaoncol.2023.5573

Article  PubMed  Google Scholar 

Skriver, C., Friis, S., Knudsen, L. B., Catarig, A. M., Clark, A. J., Dehlendorff, C., & Mørch, L. S. (2023). Potential preventive properties of GLP-1 receptor agonists against prostate cancer: A nationwide cohort study. Diabetologia, 66, 2007–2016. https://doi.org/10.1007/s00125-023-05972-x

Article  CAS  PubMed  Google Scholar 

Handbook, H. (2016).

Johnson, L. R., Barret, K. E., Gishan, F. K., Merchant, J. L., Said, H. M., & Wood, J. D. (2006). Physiology of the gastrointestinal tract; ; Vol. 1–2.

Rowlands, J., Heng, J., Newsholme, P., & Carlessi, R. (2018). Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol (Lausanne) 9.

Carlessi, R., Chen, Y., Rowlands, J., Cruzat, V. F., Keane, K. N., Egan, L., Mamotte, C., Stokes, R., Gunton, J. E., Bittencourt, P. I. H., De, et al. (2017). GLP-1 receptor signalling promotes β-cell glucose metabolism via MTOR-dependent HIF-1α activation. Scientific Reports, 7. https://doi.org/10.1038/S41598-017-02838-2.

Detka, J., & Głombik, K. (2021). Insights into a possible role of glucagon-like Peptide-1 receptor agonists in the treatment of depression. Pharmacological Reports, 73, 1020. https://doi.org/10.1007/S43440-021-00274-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koole, C., Savage, E. E., Christopoulos, A., Miller, L. J., Sexton, P. M., Wootten, D., & Minireview. (2013). Signal bias, allosterism, and polymorphic variation at the GLP-1R: Implications for drug discovery. Molecular Endocrinology, 27, 1234–1244. https://doi.org/10.1210/ME.2013-1116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato, T., Shimizu, T., Fujita, H., Imai, Y., Drucker, D. J., Seino, Y., & Yamada, Y. (2020). GLP-1 receptor signaling differentially modifies the outcomes of sterile vs viral pulmonary inflammation in male mice. Endocrinology, 161. https://doi.org/10.1210/ENDOCR/BQAA201.

Wang, W., Mei, A., Qian, H., Li, D., Xu, H., Chen, J., Yang, H., Min, X., Li, C., Cheng, L., et al. (2023). The role of glucagon-like peptide-1 receptor agonists in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 18, 129. https://doi.org/10.2147/COPD.S393323

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broide, E., Bloch, O., Ben-Yehudah, G., Cantrell, D., Shirin, H., & Rapoport, M. J. (2013). GLP-1 receptor is expressed in human stomach mucosa: Analysis of its cellular association and distribution within gastric glands. Journal of Histochemistry and Cytochemistry, 61, 649–658. https://doi.org/10.1369/0022155413497586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holst, J. J., Andersen, D. B., & Grunddal, K. V. (2022). Actions of glucagon-like peptide-1 receptor ligands in the gut. British Journal of Pharmacology, 179, 727–742. https://doi.org/10.1111/BPH.15611

Article  CAS  PubMed  Google Scholar 

Zhao, X., Wang, M., Wen, Z., Lu, Z., Cui, L., Fu, C., Xue, H., Liu, Y., & Zhang, Y. (2021). GLP-1 receptor agonists: Beyond their pancreatic effects. Front Endocrinol (Lausanne) 12.

Wang, X. C., Gusdon, A. M., Liu, H., & Qu, S. (2014). Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation. World Journal of Gastroenterology 20.

Yabut, J. M., & Drucker, D. J. (2023). Glucagon-like peptide-1 receptor-based therapeutics for metabolic liver disease. Endocrine Reviews, 44, 14–32. https://doi.org/10.1210/ENDREV/BNAC018

Article  PubMed  Google Scholar 

Wong, C., Lee, M. H., Yaow, C. Y. L., Chin, Y. H., Goh, X. L., Ng, C. H., Lim, A. Y. L., Muthiah, M. D., & Khoo, C. M. (2021). Glucagon-like peptide-1 receptor agonists for non-alcoholic fatty liver disease in type 2 diabetes: A meta-analysis. Front Endocrinol (Lausanne) 12, https://doi.org/10.3389/FENDO.2021.609110.

Liu, X., Patel, K. P., & Zheng, H. (2021). Role of renal sympathetic nerves in GLP-1 (glucagon-like peptide-1) receptor agonist exendin-4-mediated diuresis and natriuresis in diet-induced obese rats. Journal of American Heart Association, 10. https://doi.org/10.1161/JAHA.121.022542.

Górriz, J. L., Soler, M. J., Navarro-González, J. F., García-Carro, C., Puchades, M. J., D’marco, L., Castelao, A. M., Fernández-Fernández, B., Ortiz, A., & Górriz-Zambrano, C. (2020). GLP-1 receptor agonists and diabetic kidney disease: A call of attention to nephrologists. Journal Clininical Medicine, 9.

Granata, A., Maccarrone, R., Anzaldi, M., Leonardi, G., Pesce, F., Amico, F., Gesualdo, L., & Corrao, S. (2022). GLP-1 receptor agonists and renal outcomes in patients with diabetes mellitus type 2 and diabetic kidney disease: State of the art. Clinical Kidney Journal, 15.

Baggio, L. L., Yusta, B., Mulvihill, E. E., Cao, X., Streutker, C. J., Butany, J., Cappola, T. P., Margulies, K. B., & Drucker, D. J. (2018). GLP-1 receptor expression within the human heart. Endocrinology, 159,. https://doi.org/10.1210/en.2018-00004

Del Olmo-Garcia, M. I., & Merino-Torres, J. F. (2018). GLP-1 receptor agonists and cardiovascular disease in patients with type 2 diabetes. Journal Diabetes Research 2018, https://doi.org/10.1155/2018/4020492.

Hou, Y., Ernst, S. A., Heidenreich, K., & Williams, J. A. (2016). Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through CAMP. American Journal Of Physiology. Gastrointestinal And Liver Physiology, 310,. https://doi.org/10.1152/ajpgi.00293.2015

Doyle, M. E., & Egan, J. M. (2007). Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacology & Therapeutics, 113.

Liu, J., & Pang, Z. P. (2016). Glucagon-like peptide-1 drives energy metabolism on the synaptic highway. The Febs Journal, 283, 4413–4423. https://doi.org/10.1111/FEBS.13785

Article  CAS  PubMed  Google Scholar 

Jessen, L., Smith, E. P., Ulrich-Lai, Y., Herman, J. P., Seeley, R. J., Sandoval, D., & D’Alessio, D. (2017). Central nervous system GLP-1 receptors regulate islet hormone secretion and glucose homeostasis in male rats. Endocrinology, 158,. https://doi.org/10.1210/en.2016-1826

Gier, B., Butler, P. C., Lai, C. K., Kirakossian, D., DeNicola, M. M., & Yeh, M. W. (2012). Glucagon like peptide-1 receptor expression in the human thyroid gland. Journal of Clinical Endocrinology and Metabolism, 97,. https://doi.org/10.1210/jc.2011-2407

Bezin, J., Gouverneur, A., Penichon, M., Mathieu, C., Garrel, R., Hillaire-Buys, D., Pariente, A., & Faillie, J. L. (2023). GLP-1 receptor agonists and the risk of thyroid cancer. Diabetes Care, 46, 384–390. https://doi.org/10.2337/DC22-1148

Article  CAS  PubMed  Google Scholar 

Shigeoka, T., Nomiyama, T., Kawanami, T., Hamaguchi, Y., Horikawa, T., Tanaka, T., Irie, S., Motonaga, R., Hamanoue, N., Tanabe, M., et al. (2020). Activation of overexpressed glucagon-like peptide-1 receptor attenuates prostate cancer growth by inhibiting cell cycle progression. Journal Diabetes Investigation, 11,. https://doi.org/10.1111/jdi.13247

Liu, Z., Duan, X., & Yuan, M. (2022). Yu, J.; Hu, X.; Han, X.; Lan, L.; Liu, B. wei; Wang, Y.; Qin, J. fang glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Science 294, https://doi.org/10.1016/j.lfs.2022.120370.

Zhao, H. J., Jiang, X., Hu, L. J., Yang, L., Deng, L. D., Wang, Y. P., & Ren, Z. P. (2020). Activation of GL

留言 (0)

沒有登入
gif