Non-toxicity of Plant Candicidal Peptides for Mammalian Cell Lines and Galleria mellonella Model to Improving Selectivity for Clinical Use

Aerts AM, François IEJA, Meert EMK et al (2007) The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13:243–247. https://doi.org/10.1159/000104753

Article  CAS  PubMed  Google Scholar 

Allegra E, Titball RW, Carter J, Champion OL (2018) Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere 198:469–472. https://doi.org/10.1016/j.chemosphere.2018.01.175

Article  CAS  PubMed  Google Scholar 

Almeida CV, de Oliveira CFR, dos Santos EL et al (2021) Differential interactions of the antimicrobial peptide, RQ18, with phospholipids and cholesterol modulate its selectivity for microorganism membranes. Biochim Biophys Acta - Gen Subj 1865https://doi.org/10.1016/j.bbagen.2021.129937.

Article  Google Scholar 

Buck AK, Elmore DE, Darling LEO (2019) Using fluorescence microscopy to shed light on the mechanisms of antimicrobial peptides. Future Med Chem 11:2445–2458. https://doi.org/10.4155/fmc-2019-0095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Camini FC, da Silva Caetano CC, Almeida LT, de Brito Magalhães CL (2017) Implications of oxidative stress on viral pathogenesis. Arch Virol 162:907–917. https://doi.org/10.1007/s00705-016-3187-y

Article  CAS  PubMed  Google Scholar 

Cardoso MH, Orozco RQ, Rezende SB et al (2020) Computer-aided design of antimicrobial peptides: are we Generating Effective Drug candidates? Front Microbiol 10:1–15. https://doi.org/10.3389/fmicb.2019.03097

Article  Google Scholar 

Carvalho A, de O, Gomes VM (2012) Plant defensins and defensin-like peptides - Biological activities and Biotechnological Applications. Curr Pharm Des 17:4270–4293. https://doi.org/10.2174/138161211798999447

Article  Google Scholar 

Chen CH, Lu TK (2020) Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9. https://doi.org/10.3390/antibiotics9010024

Cherene MB, Taveira GB, Almeida-Silva F et al (2023a) Structural and biochemical characterization of three antimicrobial peptides from Capsicum annuum L. var. annuum leaves for anti – Candida Use. https://doi.org/10.1007/s12602-023-10112-3. Probiotics Antimicrob Proteins

Cherene MB, Ferreira SR, dos Santos L A, et al (2023b) Insecticidal activity of Capsicum annuum L. leaf proteins on cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae) development. J Asia Pac Entomol 26:1–11. https://doi.org/10.1016/j.aspen.2023.102158

Article  Google Scholar 

Choi H, Rangarajan N, Weisshaar JC (2016) Lights, Camera, Action! Antimicrobial peptide mechanisms imaged in space and time. Trends Microbiol 24:111–122. https://doi.org/10.1016/j.tim.2015.11.004

Article  CAS  PubMed  Google Scholar 

Cutuli MA, Petronio Petronio G, Vergalito F et al (2019) Galleria mellonella as a consolidated in vivo model hosts: new developments in antibacterial strategies and novel drug testing. Virulence 10:527–541. https://doi.org/10.1080/21505594.2019.1621649

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Cunha NB, Cobacho NB, Viana JFC et al (2017) The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov Today 22:234–248. https://doi.org/10.1016/j.drudis.2016.10.017

Article  CAS  PubMed  Google Scholar 

Edqvist J, Blomqvist K, Nieuwland J, Salminen TA (2018) Plant lipid transfer proteins: are we finally closing in on the roles of these enigmatic proteins? J Lipid Res 59:1374–1382. https://doi.org/10.1194/jlr.R083139

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farag MR, Alagawany M (2018) Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem Biol Interact 279:78–83. https://doi.org/10.1016/j.cbi.2017.11.007

Article  CAS  Google Scholar 

Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV (2016) Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Naturae 8:47–61. https://doi.org/10.32607/20758251-2016-8-2-47-61

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freire JM, Gaspar D, Veiga AS, Castanho MARB (2015) Shifting gear in antimicrobial and anticancer peptides biophysical studies: from vesicles to cells. J Pept Sci 21:178–185. https://doi.org/10.1002/psc.2741

Article  CAS  PubMed  Google Scholar 

Gebara RdaS, Taveira GB, de Azevedo dos Santos L et al (2020) Identification and characterization of two defensins from Capsicum annuum fruits that exhibit antimicrobial activity. Probiotics Antimicrob Proteins 12:1253–1265. https://doi.org/10.1007/s12602-020-09647-6

Article  CAS  Google Scholar 

Greco I, Molchanova N, Holmedal E et al (2020) Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-69995-9

Article  CAS  Google Scholar 

Gupta S, Kapoor P, Chaudhary K et al (2015) Peptide Toxicity Prediction. In: Computational Peptidology. pp 143–57

Harris F, Dennison SR, Singh J, Phoenix DA (2011) On the selectivity and efficacy of defense peptides with respect to Cancer cells. Med Res Rev 33:190–234. https://doi.org/10.1002/med.20252

Article  CAS  PubMed  Google Scholar 

Hein MJA, Kvansakul M, Lay FT et al (2022) Defensin-lipid interactions in membrane targeting: mechanisms of action and opportunities for the development of antimicrobial and anticancer therapeutics. Biochem Soc Trans 50:423–437. https://doi.org/10.1042/BST20200884

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helmerhorst EJ, Reijnders IM, Van Hof ’T W, et al (1999) A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett 449:105–110. https://doi.org/10.1016/S0014-5793(99)00411-1

Article  CAS  PubMed  Google Scholar 

Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:1–21. https://doi.org/10.3389/fmicb.2020.582779

Article  Google Scholar 

Huang HW (2006) Molecular mechanism of antimicrobial peptides: the origin of cooperativity. 1758:1292–1302. https://doi.org/10.1016/j.bbamem.2006.02.001

Khabbaz H, Karimi-Jafari MH, Saboury AA, BabaAli B (2021) Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques. BMC Bioinformatics 22:1–11. https://doi.org/10.1186/s12859-021-04468-y

Article  CAS  Google Scholar 

Khan F, Niaz K, Abdollahi M (2018) Toxicity of biologically active peptides and future safety aspects: an update. Curr Drug Discov Technol 15:236–242. https://doi.org/10.2174/1570163815666180219112806

Article  CAS  PubMed  Google Scholar 

Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111. https://doi.org/10.1002/pep2.24122

Kovaleva V, Bukhteeva I, Kit OY, Nesmelova IV (2020) Plant defensins from a structural perspective. Int J Mol Sci 21:1–23. https://doi.org/10.3390/ijms21155307

Article  CAS  Google Scholar 

Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343. https://doi.org/10.1016/j.freeradbiomed.2009.05.004

Article  CAS  PubMed  Google Scholar 

Kulkarni MM, Mcmaster WR, Kamysz W, Mcgwire BS (2009) Antimicrobial peptide-induced apoptotic death of Leishmania results from Calcium-dependent, caspase-independent mitochondrial toxicity *. J Biol Chem 284:15496–15504. https://doi.org/10.1074/jbc.M809079200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei J, Sun LC, Huang S et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11:3919–3931

CAS  PubMed  PubMed Central  Google Scholar 

Lewies A, Du Plessis LH, Wentzel JF (2019) Antimicrobial peptides: the Achilles’ heel of Antibiotic Resistance? Probiotics Antimicrob Proteins 11:370–381. https://doi.org/10.1007/s12602-018-9465-0

Article  CAS  PubMed  Google Scholar 

Li S, Wang Y, Xue Z et al (2021) The structure-mechanism relationship and mode of actions of antimicrobial peptides: a review. Trends Food Sci Technol 109:103–115. https://doi.org/10.1016/j.tifs.2021.01.005

Article  CAS  Google Scholar 

Maximiano MR, Franco OL (2021) Biotechnological applications of versatile plant lipid transfer proteins (LTPs). https://doi.org/10.1016/j.peptides.2021.170531. Peptides 140:

Mello EO, Ribeiro SFF, Carvalho AO et al (2011) Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr Microbiol 62:1209–1217. https://doi.org/10.1007/s00284-010-9847-3

Article  CAS  PubMed  Google Scholar 

Melnikova DN, Finkina EI, Bogdanov IV et al (2023) Features and possible applications of plant lipid-binding and transfer proteins. Membr (Basel) 13:1–17

Google Scholar 

Mishra M, Tamhane VA, Khandelwal N et al (2010) Interaction of recombinant CanPIs with Helicoverpa armigera gut proteases reveals their processing patterns, stability and efficiency. Proteomics 10:2845–2857. https://doi.org/10.1002/pmic.200900853

Article  CAS  PubMed  Google Scholar 

Mohs RC, Greig NH (2017) Drug discovery and development: role of basic biological research. Alzheimer’s Dement Transl Res Clin Interv 3:651–657. https://doi.org/10.1016/j.trci.2017.10.005

Article  Google Scholar 

Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 19:311–332. https://doi.org/10.1038/s41573-019-0058-8

Article  CAS  PubMed 

留言 (0)

沒有登入
gif