Fish Protein Hydrolysate Research Trends over the Last 5 Years and Future Research Predictions; a Bibliometric Analysis

Abd El-Rady TK, Tahoun AM, Abdin M, Amin HF (2023) Effect of different hydrolysis methods on composition and functional properties of fish protein hydrolysate obtained from bigeye tuna waste. Int J Food Sci Technol 58(12):6552–6562. https://doi.org/10.1111/ijfs.16769

Article  CAS  Google Scholar 

Abraha B (2017) Production of fish protein hydrolysate from Silver Catfish (Arius thalassinus). MOJ Food Process Technol 5(4). https://doi.org/10.15406/mojfpt.2017.05.00132

Amarasiri RPGSK, Hyun J, Lee S-W, Kim J, Jeon Y-J, Lee J-S (2023) Alcalase-assisted Mytilus edulis Hydrolysate: A Nutritional Approach for Recovery from muscle atrophy. Mar Drugs 21(12):623. https://doi.org/10.3390/md21120623

Article  CAS  PubMed  PubMed Central  Google Scholar 

BALÇIK MISIR G (2022) Novel utilization of Fish By-Products and wastes: protein hydrolysates. Acta Aquatica Turc 18(2):283–294. https://doi.org/10.22392/actaquatr.1031442

Article  Google Scholar 

Balogun JA (2023) The Fundamentals, Misuse and Abuses of Bibliometrics. In Health Research in Nigeria (pp. 11–56). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-7097-9_2

Bjørlie M, Yesiltas B, García-Moreno PJ, Espejo-Carpio FJ, Rahmani-Manglano NE, Guadix EM, Jafarpour A, Hansen EB, Marcatili P, Overgaard MT, Gregersen Echers S, Jacobsen C (2023) Bioinformatically predicted emulsifying peptides and potato protein hydrolysate improves the oxidative stability of microencapsulated fish oil. Food Chem Adv 3:100441. https://doi.org/10.1016/j.focha.2023.100441

Article  Google Scholar 

Bøgwald I, Østbye TKK, Pedersen AM, Rønning SB, Dias J, Eilertsen KE, Wubshet SG (2023) Calanus finmarchicus hydrolysate improves growth performance in feeding trial with European sea bass juveniles and increases skeletal muscle growth in cell studies. Sci Rep 13(1). https://doi.org/10.1038/s41598-023-38970-5

Cai S-Y, Wang Y-M, Zhao Y-Q, Chi C-F, Wang B (2019) Cytoprotective effect of antioxidant pentapeptides from the protein hydrolysate of swim bladders of Miiuy Croaker (Miichthys miiuy) against H2O2-Mediated human umbilical vein endothelial cell (HUVEC) Injury. Int J Mol Sci 20(21):5425. https://doi.org/10.3390/ijms20215425

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chalamaiah M, Keskin Ulug S, Hong H, Wu J (2019) Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. In Journal of Functional Foods (Vol. 58, pp. 123–129). Elsevier Ltd. https://doi.org/10.1016/j.jff.2019.04.050

Chen J, Ryu B, Zhang Y, Liang P, Li C, Zhou C, Yang P, Hong P, Qian Z (2020) Comparison of an angiotensin-I‐converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. J Sci Food Agric 100(1):315–324. https://doi.org/10.1002/jsfa.10041

Article  CAS  PubMed  Google Scholar 

Daskalaki MG, Axarlis K, Aspevik T, Orfanakis M, Kolliniati O, Lapi I, Tzardi M, Dermitzaki E, Venihaki M, Kousoulaki K, Tsatsanis C (2021) Fish Sidestream-Derived protein hydrolysates suppress DSS-Induced colitis by modulating intestinal inflammation in mice. Mar Drugs 19(6):312. https://doi.org/10.3390/md19060312

Article  CAS  PubMed  PubMed Central  Google Scholar 

de la Fuente B, Aspevik T, Barba FJ, Kousoulaki K, Berrada H (2023) Mineral Bioaccessibility and antioxidant capacity of protein hydrolysates from Salmon (Salmo salar) and mackerel (Scomber scombrus) Backbones and heads. Mar Drugs 21(5):294. https://doi.org/10.3390/md21050294

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Silva D, Halken S, Singh C, Muraro A, Angier E, Arasi S, Arshad H, Beyer K, Boyle R, du Toit G, Eigenmann P, Grimshaw K, Hoest A, Jones C, Khaleva E, Lack G, Szajewska H, Venter C, Verhasselt V, Roberts G (2020) Preventing food allergy in infancy and childhood: systematic review of randomised controlled trials. Pediatr Allergy Immunol 31(7):813–826. https://doi.org/10.1111/pai.13273

Article  PubMed  Google Scholar 

Dinakarkumar Y, Krishnamoorthy S, Margavelu G, Ramakrishnan G, Chandran M (2022) Production and characterization of fish protein hydrolysate: effective utilization of trawl by-catch. Food Chem Adv 1. https://doi.org/10.1016/j.focha.2022.100138

Ding Y, Yan C, Dai W, Wang Y, Liu S, Zheng R, Zhou X (2023) Flavor improving effects of cysteine in xylose–glycine–fish waste protein hydrolysates (FPHs) Maillard reaction system. Bioresources Bioprocess 10(1). https://doi.org/10.1186/s40643-023-00714-8

do Alves N, dos Santos R, Almeida JRS, da Silva FLC (2023) F. A. P., & da Silva Araújo, Í. B. Use of Protein By-Products Obtained from Aquatic Organisms as Bioactive Compounds: A Bibliometric Review. Food Reviews International, 1–20. https://doi.org/10.1080/87559129.2023.2278841

Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, Busca K, Egan F, Muller N, Whooley J, McGinnity P, Culloty S, Ross RP, Stanton C (2020) Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci Rep 10(1):4194. https://doi.org/10.1038/s41598-020-60325-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan Z, Wu D, Li J, Zhang Y, Cui Z, Li T, Zheng X, Liu H, Wang L, Li H (2022) Assessment of Fish Protein hydrolysates in Juvenile Largemouth Bass (Micropterus salmoides) diets: Effect on Growth, intestinal antioxidant status, immunity, and Microflora. Front Nutr 9. https://doi.org/10.3389/fnut.2022.816341

Gao R, Shen Y, Shu W, Jin W, Bai F, Wang J, Zhang Y, El-Seedi H, Sun Q, Yuan L (2020) Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition. Food Funct 11(8):6987–6999. https://doi.org/10.1039/C9FO02772F

Article  CAS  PubMed  Google Scholar 

Gao R, Yu Q, Shen Y, Chu Q, Chen G, Fen S, Yang M, Yuan L, McClements DJ, Sun Q (2021) Production, bioactive properties, and potential applications of fish protein hydrolysates: developments and challenges. Trends in Food Science and Technology, vol 110. Elsevier Ltd, pp 687–699. https://doi.org/10.1016/j.tifs.2021.02.031

García-Santiago X, Franco‐Uría A, Antelo LT, Vázquez JA, Pérez‐Martín R, Moreira MT, Feijoo G (2021) Eco‐efficiency of a marine biorefinery for valorization of cartilaginous fish biomass. J Ind Ecol 25(3):789–801. https://doi.org/10.1111/jiec.13066

Article  CAS  Google Scholar 

Gómez-Guillén MC, Pérez-García S, Alemán A, Vázquez JA, Montero MP (2022) The role of the drying method on fish oil entrapment in a fish muscle protein ̶ κ-carrageenan ̶ fish protein hydrolysate wall matrix and the properties of colloidal dispersions. Food Hydrocolloids 131:107799. https://doi.org/10.1016/j.foodhyd.2022.107799

Article  CAS  Google Scholar 

Gómez-Guillén MC, Pérez-García S, Alemán A, López-Caballero ME, Sotelo CG, Montero MP (2023) Development of a ready-to-eat Fish Product enriched with Fish Oil Entrapped in a κ-Carrageenan Egg White Fish Protein Hydrolysate Dry Powder. Foods 12(11):2272. https://doi.org/10.3390/foods12112272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gui M, Gao L, Rao L, Li P, Zhang Y, Han J, Li J (2022) Bioactive peptides identified from enzymatic hydrolysates of sturgeon skin. J Sci Food Agric 102(5):1948–1957. https://doi.org/10.1002/jsfa.11532

Article  CAS  PubMed  Google Scholar 

Hashem AMA, Venmarath A, Kudre TG (2023) Preparation, purification, and identification of novel antioxidant peptides from red-bellied pacu (Piaractus brachypomus) fish meat protein hydrolysate. Food Sci Biotechnol 32(14):2057–2068. https://doi.org/10.1007/s10068-023-01316-y

Article  CAS  PubMed  Google Scholar 

He W, Su G, Sun-Waterhouse D, Waterhouse GIN, Zhao M, Liu Y (2019) In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem 272:453–461. https://doi.org/10.1016/j.foodchem.2018.08.057

Article  CAS  PubMed  Google Scholar 

Henriques A, Vázquez JA, Valcarcel J, Mendes R, Bandarra NM, Pires C (2021) Characterization of protein hydrolysates from Fish discards and By-Products from the North-West Spain Fishing Fleet as potential sources of bioactive peptides. Mar Drugs 19(6):338. https://doi.org/10.3390/md19060338

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herault M, Gunathilaka BE, Fournier V, Le Bris H, Lee KJ, Sadoul B (2023) Aquatic product hydrolysates increase rearing performance in red seabream (Pagrus major), fed a low fish meal diet, in both controlled and stressed conditions: from growth to stress responses. Aquaculture 576. https://doi.org/10.1016/j.aquaculture.2023.739830

Himaya SWA, Ngo D-H, Ryu B, Kim S-K (2012) An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific Cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem 132(4):1872–1882. https://doi.org/10.1016/j.foodchem.2011.12.020

Article  CAS  Google Scholar 

Honrado A, Ardila P, Leciñena P, Beltrán JA, Calanche JB (2023) Transforming ‘Bonito Del Norte’ Tuna By-Products into functional ingredients for nutritional enhancement of cereal-based foods. Foods 12(24):4437. https://doi.org/10.3390/foods12244437

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu X-M, Wang Y-M, Zhao Y-Q, Chi C-F, Wang B (2020) Antioxidant peptides from the protein hydrolysate of Monkfish (Lophius litulon) muscle: purification, identification, and cytoprotective function on HepG2 cells damage by H2O2. Mar Drugs 18(3):153. https://doi.org/10.3390/md18030153

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Y-D, Xi Q-H, Kong J, Zhao Y-Q, Chi C-F, Wang B (2023) Angiotensin-I-Converting enzyme (ACE)-Inhibitory peptides from the collagens of Monkfish (Lophius litulon) swim bladders: isolation, characterization, Molecular Docking analysis and activity evaluation. Mar Drugs 21(10):516. https://doi.org/10.3390/md21100516

Article  CAS  PubMed  PubMed Central  Google Scholar 

Idowu AT, Benjakul S (2019) Bitterness of fish protein hydrolysate and its debittering prospects. J Food Biochem 43(9). https://doi.org/10.1111/jfbc.12978

Idowu AT, Benjakul S, Sinthusamran S, Sookchoo P, Kishimura H (2019) Protein hydrolysate from salmon frames: production, characteristics and antioxidative activity. J Food Biochem 43(2):e12734. https://doi.org/10.1111/jfbc.12734

Article  CAS  PubMed  Google Scholar 

Idowu AT, Igiehon OO, Idowu S, Olatunde OO, Benjakul S (2021) Bioactivity potentials and general applications of fish protein hydrolysates. Int J Pept Res Ther 27(1):109–118. https://doi.org/10.1007/s10989-020-10071-1

Article  CAS  Google Scholar 

Kang HK, Lee HH, Seo CH, Park Y (2019) Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. In Marine Drugs (Vol. 17, Issue 6). MDPI AG. https://doi.org/10.3390/md17060350

Lambré C, Baviera B, Bolognesi JM, Cocconcelli C, Crebelli PS, Gott R, Grob DM, Lampi K, Mengelers E, Mortensen M, Rivière A, Steffensen G, Tlustos I, Van Loveren C, Vernis H, Zorn L, Roos H, Magdalena Y, Apergi A, Chesson K, A (2023a) Safety evaluation of the food enzyme subtilisin from the non-genetically modified Bacillus paralicheniformis strain DP‐Dzx96. EFSA J 21(8). https://doi.org/10.2903/j.efsa.2023.8155

Lambré C, Baviera B, Bolognesi JM, Cocconcelli C, Crebelli PS, Gott R, Grob DM, Lampi K, Mengelers E, Mortensen M, Rivière A, Steffensen G, Tlustos I, Van Loveren C, Vernis H, Zorn L, Glandorf H, Herman B, Roos L, Chesson Y, A (2023b) Safety evaluation of the food enzyme leucyl aminopeptidase from non-genetically modified aspergillus oryzae strain NZYM‐EX. EFSA J 21(12). https://doi.org/10.2903/j.efsa.2023.8507

Lambré C, Baviera B, Bolognesi JM, Cocconcelli C, Crebelli PS, Gott R, Grob DM, Lampi K, Mengelers E, Mortensen M, Rivière A, Steffensen G, Tlustos I, Van Loveren C, Vernis H, Zorn L, Herman H, Aguilera L, Andryszkiewicz J, Chesson M, A (2023c) Safety evaluation of the food enzyme bacillolysin from the non-genetically modified Bacillus amyloliquefaciens strain AGS 430. EFSA J 21(11). https://doi.org/10.2903/j.efsa.2023.8392

Lambré C, Baviera B, Bolognesi JM, Cocconcelli C, Crebelli PS, Gott R, Grob DM, Lampi K, Mengelers E, Mortensen M, Rivière A, Steffensen G, Tlustos I, Van Loveren C, Vernis H, Zorn L, Herman H, Aguilera L, Andryszkiewicz J, Chesson M, A (2023d) Safety evaluation of the food enzyme bacillolysin from the non-genetically modified Bacillus amyloliquefaciens strain GNP. EFSA J 21(11). https://doi.org/10.2903/j.efsa.2023.8391

Lambré C, Baviera B, Bolognesi JM, Cocconcelli C, Crebelli PS, Gott R, Grob DM, Lampi K, Mengelers E, Mortensen M, Rivière A, Steffensen G, Tlustos I, Van Loveren C, Vernis H, Zorn L, Herman H, Aguilera L, Andryszkiewicz J, Chesson M, A (2023e) Safety evaluation of the food enzyme bacillolysin from the non-genetically modified Bacillus amyloliquefaciens strain HPN 131. EFSA J 21(11). https://doi.org/10.2903/j.efsa.2023.8390

Lambré C, Baviera B, Bolognesi JM, Cocconcelli C, Crebelli PS, Gott R, Grob DM, Lampi K, Mengelers E, Mortensen M, Rivière A, Steffensen G, Tlustos I, Van Loveren C, Vernis H, Zorn L, Roos H, Aguilera Y, Andryszkiewicz J, Chesson M, A (2023f) Safety evaluation of the food enzyme subtilisin from the non-genetically modified Bacillus licheniformis strain NZYM‐CX. EFSA J 21(11). https://doi.org/10.2903/j.efsa.2023.8406

Lapi I, Kolliniati O, Aspevik T, Deiktakis EE, Axarlis K, Daskalaki MG, Dermitzaki E, Tzardi M, Kampranis SC, Marsni Z, El, Kousoulaki KC, Tsatsanis C, Venihaki M (2021) Collagen-containing Fish Sidestream-Derived protein hydrolysates support skin repair via chemokine induction. Mar Drugs 19(7):396. https://doi.org/10.3390/md19070396

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif