In Silico Discovery of LL13, a Shortened Pardaxin 6 Peptide Derivative with Anti-proliferative Activity

Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GPS (2021) AntiCP 2.0: an updated model for predicting anticancer peptides. Brief Bioinform 22:3. https://doi.org/10.1093/bib/bbaa153

Article  CAS  Google Scholar 

Ahmaditaba MA, Shahosseini S, Daraei B, Zarghi A, Houshdar Tehrani MH (2017) Design, synthesis, and biological evaluation of new peptide analogues as selective COX-2 inhibitors. Arch Pharm (weinheim) 350:10. https://doi.org/10.1002/ardp.201700158

Article  CAS  Google Scholar 

Akagi T, Kaneko T, Kida T, Akashi M (2005) Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier. J Control Release 108(2–3):226–236. https://doi.org/10.1016/j.jconrel.2005.08.003

Article  CAS  PubMed  Google Scholar 

Antoniou N, Vlachakis D, Memou A, Leandrou E, Valkimadi PE, Melachroinou K, Re DB, Przedborski S, Dauer WT, Stefanis L, Rideout HJ (2018) A motif within the armadillo repeat of Parkinson’s-linked LRRK2 interacts with FADD to hijack the extrinsic death pathway. Sci Rep 8(1):3455. https://doi.org/10.1038/s41598-018-21931-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, Zhao Y (2020) Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res 10(9):2993–3036

CAS  PubMed  PubMed Central  Google Scholar 

Chen YP, Shih PC, Feng CW, Wu CC, Tsui KH, Lin YH, Kuo HM, Wen ZH (2021) Pardaxin activates excessive mitophagy and mitochondria-mediated apoptosis in human ovarian cancer by inducing reactive oxygen species. Antioxidants (basel) 10:12. https://doi.org/10.3390/antiox10121883

Article  CAS  Google Scholar 

Chiangjong W, Chutipongtanate S, Hongeng S (2020) Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 57(3):678–696. https://doi.org/10.3892/ijo.2020.5099

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duvvuri M, Konkar S, Hong KH, Blagg BS, Krise JP (2006) A new approach for enhancing differential selectivity of drugs to cancer cells. ACS Chem Biol 1(5):309–315. https://doi.org/10.1021/cb6001202

Article  CAS  PubMed  Google Scholar 

Fan R, Yuan Y, Zhang Q, Zhou XR, Jia L, Liu Z, Yu C, Luo SZ, Chen L (2017) Isoleucine/leucine residues at “a” and “d” positions of a heptad repeat sequence are crucial for the cytolytic activity of a short anticancer lytic peptide. Amino Acids 49(1):193–202. https://doi.org/10.1007/s00726-016-2350-9

Article  CAS  PubMed  Google Scholar 

Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA (2021) Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals (basel) 14:2. https://doi.org/10.3390/ph14020157

Article  CAS  Google Scholar 

Ginting TE, Suryatenggara J, Christian S, Mathew G (2017) Proinflammatory response induced by Newcastle disease virus in tumor and normal cells. Oncolytic Virother 6:21–30. https://doi.org/10.2147/OV.S123292

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery C, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9):e73957. https://doi.org/10.1371/journal.pone.0073957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP (2015) Peptide toxicity prediction. Methods Mol Biol 1268:143–157. https://doi.org/10.1007/978-1-4939-2285-7_7

Article  CAS  PubMed  Google Scholar 

Han Y, Cui Z, Li YH, Hsu WH, Lee BH (2015) In vitro and in vivo anticancer activity of pardaxin against proliferation and growth of oral squamous cell carcinoma. Mar Drugs 14(1):2. https://doi.org/10.3390/md14010002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu JC, Lin LC, Tzen JT, Chen JY (2011) Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells. Peptides 32(6):1110–1116. https://doi.org/10.1016/j.peptides.2011.04.024

Article  CAS  PubMed  Google Scholar 

Huang TC, Lee JF, Chen JY (2011) Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs 9(10):1995–2009. https://doi.org/10.3390/md9101995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang YP, Hsia TC, Yeh CA, Ma YS, Hsu SY, Liu YC, Lyu PC, Lai KC, Peng SF, Lien JC, Hsieh WT (2023) PW06 triggered Fas-FADD to induce apoptotic cell death in human pancreatic carcinoma MIA PaCa-2 cells through the activation of the caspase-mediated pathway. Oxid Med Cell Longev 2023:3479688. https://doi.org/10.1155/2023/3479688

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalafatovic D, Giralt E (2017) Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules 22:11. https://doi.org/10.3390/molecules22111929

Article  CAS  Google Scholar 

Kobon ET, Thongararm P, Roytrakul S, Meesuk L, Chumnanpuen P (2016) Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput Struct Biotechnol J 14:49–57. https://doi.org/10.1016/j.csbj.2015.11.005

Article  CAS  Google Scholar 

Kumar V, Agrawal P, Kumar R, Bhalla S, Usmani SS, Varshney GC, Raghava GPS (2018) Prediction of cell-penetrating potential of modified peptides containing natural and chemically modified residues. Front Microbiol 9:725. https://doi.org/10.3389/fmicb.2018.00725

Article  PubMed  PubMed Central  Google Scholar 

Lamiable A, Thevenet P, Rey J, Vavrusa M, Derreumaux P, Tuffery P (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucl Acids Res 44(W1):W449-454. https://doi.org/10.1093/nar/gkw329

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazarovici P (2002) The structure and function of pardaxin. J Toxicol Toxin Rev 21(4):391–421. https://doi.org/10.1081/TXR-120014410

Article  CAS  Google Scholar 

Lerksuthirat T, On-Yam P, Chitphuk S, Stitchantrakul W, Newburg DS, Morrow AL, Hongeng S, Chiangjong W, Chutipongtanate S (2023) ALA-A2 is a novel anticancer peptide inspired by alpha-lactalbumin: a discovery from a computational peptide library, in silico anticancer peptide screening and in vitro experimental validation. Glob Chall 7(3):2200213. https://doi.org/10.1002/gch2.202200213

Article  PubMed  PubMed Central  Google Scholar 

Lin MC, Hui CF, Chen JY, Wu JL (2013) Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides 44:139–148. https://doi.org/10.1016/j.peptides.2013.04.004

Article  CAS  PubMed  Google Scholar 

Liscano Y, Onate-Garzon J, Delgado JP (2020) Peptides with dual antimicrobial-anticancer activity: strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules 25:18. https://doi.org/10.3390/molecules25184245

Article  CAS  Google Scholar 

Liu M, Lv J, Chen L, Li W, Han W (2022) In Silico discovery of anticancer peptides from Sanghuang. Int J Mol Sci 23:22. https://doi.org/10.3390/ijms232213682

Article  CAS  Google Scholar 

Mphahlele MJ, Magwaza NM, Malindisa ST, Choong YS (2021) Biological evaluation the 2-aryl-2,3-dihydrobenzodiazaborinin-4(1H)-ones as potential dual alpha-glucosidase and alpha-amylase inhibitors with antioxidant properties. Chem Biol Drug Des 98(2):234–247. https://doi.org/10.1111/cbdd.13893

Article  CAS  PubMed  Google Scholar 

Ndolo RA, Luan Y, Duan S, Forrest ML, Krise JP (2012) Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro. PLoS ONE 7(11):e49366. https://doi.org/10.1371/journal.pone.0049366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newcomb EW, Sosnow M, Demopoulos RI, Zeleniuch-Jacquotte A, Sorich J, Speyer JL (1999) Expression of the cell cycle inhibitor p27KIP1 is a new prognostic marker associated with survival in epithelial ovarian tumors. Am J Pathol 154(1):119–125. https://doi.org/10.1016/S0002-9440(10)65258-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ng CX, Le CF, Tor YS, Lee SH (2021) Hybrid anticancer peptides DN1 and DN4 exert selective cytotoxicity against hepatocellular carcinoma cells by inducing both intrinsic and extrinsic apoptotic pathways. Int J Pept Res Ther 27:2757–2775. https://doi.org/10.1007/s10989-021-10288-8

Article  CAS  Google Scholar 

Niidome T, Matsuyama N, Kunihara M, Hatakeyama T, Aoyagi H (2005) Effect of chain length of cationic model peptides on antibacterial activity. Bull Chem Soc Jpn 78(3):473–476. https://doi.org/10.1246/bcsj.78.473

Article  CAS  Google Scholar 

Oren Z, Shai Y (1996) A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem 237(1):303–310. https://doi.org/10.1111/j.1432-1033.1996.0303n.x

Article  CAS  PubMed  Google Scholar 

Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci 19:2. https://doi.org/10.3390/ijms19020448

Article 

留言 (0)

沒有登入
gif