Exploring Therapeutic Potential: A Comprehensive Review of Antimicrobial Peptides in Oral Cancer Management

Abiko Y, Mitamura J, Nishimura M et al (1999) Pattern of expression of beta-defensins in oral squamous cell carcinoma. Cancer Lett 143:37–43. https://doi.org/10.1016/S0304-3835(99)00171-8

Article  CAS  PubMed  Google Scholar 

Açil Y, Torz K, Gülses A et al (2018) An experimental study on antitumoral effects of KI-21-3, a synthetic fragment of antimicrobial peptide LL-37, on oral squamous cell carcinoma. J Cranio-Maxillofacial Surg 46:1586–1592. https://doi.org/10.1016/j.jcms.2018.05.048

Article  Google Scholar 

Aghazadeh H, Memariani H, Ranjbar R, Pooshang Bagheri K (2019) The activity and action mechanism of novel short selective LL-37‐derived anticancer peptides against clinical isolates of Escherichia coli. Chem Biol Drug Des 93:75–83. https://doi.org/10.1111/cbdd.13381

Article  CAS  PubMed  Google Scholar 

Al-Ostoot FH, Salah S, Khamees HA, Khanum SA (2021) Tumor angiogenesis: current challenges and therapeutic opportunities. Cancer Treat Res Commun 28:100422. https://doi.org/10.1016/j.ctarc.2021.100422

Article  PubMed  Google Scholar 

Baghban R, Roshangar L, Jahanban-Esfahlan R et al (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 18:59. https://doi.org/10.1186/s12964-020-0530-4

Article  PubMed  PubMed Central  Google Scholar 

Baxter AA, Lay FT, Poon IKH et al (2017) Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 74:3809–3825. https://doi.org/10.1007/s00018-017-2604-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beesoo R, Neergheen-Bhujun V, Bhagooli R, Bahorun T (2014) Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat Res Mol Mech Mutagen 768:84–97. https://doi.org/10.1016/j.mrfmmm.2014.03.005

Article  CAS  Google Scholar 

Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogenesis 5:e189. https://doi.org/10.1038/oncsis.2015.49

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bevers E, Comfurius P, Zwaal R (1996) Regulatory mechanisms in maintenance and modulation of transmembrane lipid asymmetry: pathophysiological implications. Lupus 5:480–487. https://doi.org/10.1177/096120339600500531

Article  CAS  PubMed  Google Scholar 

Biragyn A, Surenhu M, Yang D et al (2001) Mediators of Innate Immunity that Target Immature, but not mature, dendritic cells induce Antitumor Immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol 167:6644–6653. https://doi.org/10.4049/jimmunol.167.11.6644

Article  CAS  PubMed  Google Scholar 

Biragyn A, Belyakov IM, Chow Y-H et al (2002a) DNA vaccines encoding human immunodeficiency virus–1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood 100:1153–1159. https://doi.org/10.1182/blood-2002-01-0086

Article  CAS  PubMed  Google Scholar 

Biragyn A, Ruffini PA, Leifer CA et al (2002b) Toll-like receptor 4-Dependent activation of dendritic cells by β-Defensin 2. Sci (80-) 298:1025–1029. https://doi.org/10.1126/science.1075565

Article  CAS  Google Scholar 

Bonass WA, High AS, Owen PJ, Devine DA (1999) Expression of β-defensin genes by human salivary glands. Oral Microbiol Immunol 14:371–374. https://doi.org/10.1034/j.1399-302X.1999.140607.x

Article  CAS  PubMed  Google Scholar 

Bono F, De Smet F, Herbert C et al (2013) Inhibition of Tumor Angiogenesis and Growth by a small-molecule Multi-FGF receptor blocker with Allosteric Properties. Cancer Cell 23:477–488. https://doi.org/10.1016/j.ccr.2013.02.019

Article  CAS  PubMed  Google Scholar 

Bontems F, Roumestand C, Gilquin B et al (1991) Refined structure of Charybdotoxin: common motifs in Scorpion toxins and Insect defensins. Sci (80-) 254:1521–1523. https://doi.org/10.1126/science.1720574

Article  CAS  Google Scholar 

Boohaker J, Lee RW, Vishnubhotla M P, et al (2012) The Use of therapeutic peptides to target and to kill Cancer cells. Curr Med Chem 19:3794–3804. https://doi.org/10.2174/092986712801661004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruns H, Büttner M, Fabri M et al (2015) Vitamin D–dependent induction of cathelicidin in human macrophages results in cytotoxicity against high-grade B cell lymphoma. Sci Transl Med 7. https://doi.org/10.1126/scitranslmed.aaa3230

Cao L, Dai C, Li Z et al (2012) Antibacterial activity and mechanism of a scorpion venom peptide derivative in Vitro and in vivo. PLoS ONE 7:e40135. https://doi.org/10.1371/journal.pone.0040135

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardoso MH, Oshiro KGN, Rezende SB et al (2018) The Structure/Function Relationship in Antimicrobial Peptides: What Can we Obtain From Structural Data? pp 359–384

Chan SC, Hui L, Chen HM (1998) Enhancement of the cytolytic effect of anti-bacterial cecropin by the microvilli of cancer cells. Anticancer Res 18:4467–4474

CAS  PubMed  Google Scholar 

Chavakis T, Cines DB, Rhee J-S et al (2004) Regulation of neovascularization by human neutrophil peptides (α-defensins): a link between inflammation and angiogenesis. FASEB J 18:1306–1308. https://doi.org/10.1096/fj.03-1009fje

Article  CAS  PubMed  Google Scholar 

Chen X, Qi G, Qin M et al (2017) DNA methylation directly downregulates human cathelicidin antimicrobial peptide gene (CAMP) promoter activity. Oncotarget 8:27943–27952. https://doi.org/10.18632/oncotarget.15847

Article  PubMed  PubMed Central  Google Scholar 

Chen X, Ji S, Si J et al (2020) Human cathelicidin antimicrobial peptide suppresses proliferation, migration and invasion of oral carcinoma HSC-3 cells via a novel mechanism involving caspase-3 mediated apoptosis. Mol Med Rep 22:5243–5250. https://doi.org/10.3892/mmr.2020.11629

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiu F-C, Kuo H-M, Yu C-L et al (2024) Marine-derived antimicrobial peptide piscidin-1 triggers extrinsic and intrinsic apoptosis in oral squamous cell carcinoma through reactive oxygen species production and inhibits angiogenesis. Free Radic Biol Med 220:28–42. https://doi.org/10.1016/j.freeradbiomed.2024.04.235

Article  CAS  PubMed  Google Scholar 

Chow LQM (2020) Head and Neck Cancer. N Engl J Med 382:60–72. https://doi.org/10.1056/NEJMra1715715

Article  CAS  PubMed  Google Scholar 

Cook KM, Figg WD (2010) Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 60:222–243. https://doi.org/10.3322/caac.20075

Article  PubMed  PubMed Central  Google Scholar 

Cuttitta F, Pío R, Garayoa M et al (2002) Adrenomedullin functions as an important tumor survival factor in human carcinogenesis. Microsc Res Tech 57:110–119. https://doi.org/10.1002/jemt.10059

Article  CAS  PubMed  Google Scholar 

Deslouches B, Di YP (2017) Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 8:46635–46651. https://doi.org/10.18632/oncotarget.16743

Article  PubMed  PubMed Central  Google Scholar 

Devaud C, John LB, Westwood JA et al (2013) Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. Oncoimmunology 2:e25961. https://doi.org/10.4161/onci.25961

Article  PubMed  PubMed Central  Google Scholar 

Diao Y, Han W, Zhao H et al (2012) Designed synthetic analogs of the α-helical peptide temporin‐La with improved antitumor efficacies via charge modification and incorporation of the integrin αvβ3 homing domain. J Pept Sci 18:476–486. https://doi.org/10.1002/psc.2420

Article  CAS 

留言 (0)

沒有登入
gif