Exploring the Potential of Designed Peptides Containing Lysine and Arginine Repeats against VIM-2 Metallo-Beta-Lactamases

Aitha M, Marts AR, Bergstrom A, Møller AJ, Moritz L, Turner L, Nix JC, Bonomo RA, Page RC, Tierney DL, Crowder MW (2014) Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Biochemistry 53(46):7321–7331. https://doi.org/10.1021/bi500916y

Article  CAS  PubMed  Google Scholar 

Anurag Anand A, Amod A, Anwar S, Sahoo AK, Sethi G, Samanta SK (2023) A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol. https://doi.org/10.1080/1040841x.2023.2293019

Article  PubMed  Google Scholar 

Banerjee D, Shivapriya PM, Gautam PK, Misra K, Sahoo AK, Samanta SK (2020) A review on basic biology of bacterial biofilm infections and their treatments by nanotechnology based approaches. Proc Natl Acad Sci India Section B Biol Sci. https://doi.org/10.1007/s40011-018-01065-7

Article  Google Scholar 

Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796. https://doi.org/10.1038/nchembio.232

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brem J, Cain R, Cahill S, McDonough MA, Clifton IJ, Jiménez-Castellanos J-C, Avison MB, Spencer J, Fishwick CWG, Schofield CJ (2016) Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 7(1):1–8. https://doi.org/10.1038/ncomms12406

Article  CAS  Google Scholar 

Christopeit T, Yang K-W, Yang S-K, Leiros H-KS (2016) The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor. Acta Crystallogr F Struct Biol Commun 72(11):813–819. https://doi.org/10.1107/s2053230x16016113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalal V, Kumari R (2022) Screening and identification of natural product-like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus: an in-silico approach. ChemistrySelect. https://doi.org/10.1002/slct.202201728

Article  Google Scholar 

Dalal V, Kumar P, Rakhaminov G, Qamar A, Fan X, Hunter H, Tomar S, Golemi-Kotra D, Kumar P (2019) Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of staphylococcus aureus. J Mol Biol 431(17):3107–3123. https://doi.org/10.1016/j.jmb.2019.06.019

Article  CAS  PubMed  Google Scholar 

Dalal V, Dhankhar P, Singh V, Singh V, Rakhaminov G, Golemi-Kotra D, Kumar P (2021) Structure-based identification of potential drugs against FmtA of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J 40(2):148–165. https://doi.org/10.1007/s10930-020-09953-6

Article  CAS  PubMed  Google Scholar 

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. https://doi.org/10.1063/1.470117

Article  CAS  Google Scholar 

Evans DJ, Holian BL (1985) The nose-hoover thermostat. J Chem Phys 83(8):4069–4074. https://doi.org/10.1063/1.449071

Article  CAS  Google Scholar 

Fast W, Sutton LD (2013) Metallo-β-lactamase: Inhibitors and reporter substrates. Biochimica Et Biophysica Acta Prot Proteom 1834(8):1648–1659. https://doi.org/10.1016/j.bbapap.2013.04.024

Article  CAS  Google Scholar 

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the expasy server. Humana Press

Book  Google Scholar 

Jiang Z, Vasil AI, Hale J, Hancock REW, Vasil ML, Hodges RS (2009) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Advances in experimental medicine and biology. Springer, New York, pp 561–562

Google Scholar 

Kumari R, Dalal V (2022) Identification of potential inhibitors for LLM ofStaphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J Biomol Struct Dyn 40(20):9833–9847. https://doi.org/10.1080/07391102.2021.1936179

Article  CAS  PubMed  Google Scholar 

Lai MC, Topp EM (1999) Solid-state chemical stability of proteins and peptides. J Pharm Sci 88(5):489–500. https://doi.org/10.1021/js980374e

Article  CAS  PubMed  Google Scholar 

Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P (2016) PEP-FOLD3: fasterdenovostructure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44(W1):W449–W454. https://doi.org/10.1093/nar/gkw329

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Vorobyov I, Allen TW (2013) The different interactions of lysine and arginine side chains with lipid membranes. J Phys Chem B 117(40):11906–11920. https://doi.org/10.1021/jp405418y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minond D, Saldanha SA, Subramaniam P, Spaargaren M, Spicer T, Fotsing JR, Weide T, Fokin VV, Sharpless KB, Galleni M, Bebrone C, Lassaux P, Hodder P (2009) Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Bioorg Med Chem 17(14):5027–5037. https://doi.org/10.1016/j.bmc.2009.05.070

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mondal RK, Sen D, Arya A, Samanta SK (2023) Developing anti-microbial peptide database version 1 to provide comprehensive and exhaustive resource of manually curated AMPs. Sci Rep 13(1):17843

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. https://doi.org/10.1063/1.328693

Article  CAS  Google Scholar 

Pingali MS, Singh A, Singh V, Sahoo AK, Varadwaj PK, Samanta SK (2021) Docking and molecular dynamics simulation for therapeutic repurposing in small cell lung cancer (SCLC) patients infected with COVID-19. J Biomol Struct Dyn 41(1):16–25. https://doi.org/10.1080/07391102.2021.2002719

Article  CAS  PubMed  Google Scholar 

Pingali MS, Singh A, Anurag Anand A, Gupta SK, Sahoo AK, Varadwaj PK, Samanta SK (2023) Identification of naturally occurring compounds as alternatives to radiation therapy for treatment of small cell lung cancer: Natural alternatives to radiation therapy for SCLC. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2265505

Article  PubMed  Google Scholar 

Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, Nordmann P (2000) Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 44(4):891–897. https://doi.org/10.1128/aac.44.4.891-897.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prakash A, Kumar V, Meena NK, Lynn AM (2018) Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Adv 8(35):19835–19845. https://doi.org/10.1039/c8ra03368d

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossino G, Marchese E, Galli G, Verde F, Finizio M, Serra M, Linciano P, Collina S (2023) Peptides as therapeutic agents: challenges and opportunities in the green transition era. Molecules 28(20):7165. https://doi.org/10.3390/molecules28207165

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotondo CM, Marrone L, Goodfellow VJ, Ghavami A, Labbé G, Spencer J, Dmitrienko GI, Siemann S (2015) Arginine-containing peptides as potent inhibitors of VIM-2 metallo-β-lactamase. Biochimica Et Biophysica Acta Gen Subj 1850(11):2228–2238. https://doi.org/10.1016/j.bbagen.2015.07.012

Article  CAS  Google Scholar 

Sawa T, Kooguchi K, Moriyama K (2020) Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care. https://doi.org/10.1186/s40560-020-0429-6

Article  PubMed  PubMed Central  Google Scholar 

Singh A, Amod A, Pandey P, Bo

留言 (0)

沒有登入
gif