Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy

Bussard, K. M., Mutkus, L., Stumpf, K., Gomez-Manzano, C., & Marini, F. C. (2016). Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Research: BCR, 18(1), 84. https://doi.org/10.1186/s13058-016-0740-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahmanian, M., Seyfoori, A., Ghasemi, M., Shamsi, M., Kolahchi, A. R., Modarres, H. P. ,…, Majidzadeh-A, K. (2021). In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. Journal of Controlled Release: Official Journal of the Controlled Release Society, 334, 164–177. https://doi.org/10.1016/j.jconrel.2021.04.024

Marozzi, M., Parnigoni, A., Negri, A., Viola, M., Vigetti, D., Passi, A. ,…, Rizzi, F. (2021). Inflammation, extracellular matrix remodeling, and proteostasis in tumor microenvironment. International Journal of Molecular Sciences, 22(15), 8102. https://doi.org/10.3390/ijms22158102

Hu, D., Li, Z., Zheng, B., Lin, X., Pan, Y., Gong, P. ,…, Wang, L. (2022). Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Communications (London, England), 42(5), 401–434. https://doi.org/10.1002/cac2.12291

Bartoschek, M., Oskolkov, N., Bocci, M., Lövrot, J., Larsson, C., Sommarin, M. ,…, Pietras, K. (2018). Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nature Communications, 9(1), 5150. https://doi.org/10.1038/s41467-018-07582-3

Bryce, A. S., Dreyer, S. B., Froeling, F. E. M., & Chang, D. K. (2022). Exploring the biology of cancer-associated fibroblasts in pancreatic cancer. Cancers, 14(21), 5302. https://doi.org/10.3390/cancers14215302

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montori, M., Scorzoni, C., Argenziano, M. E., Balducci, D., De Blasio, F., Martini, F. ,…, Maroni, L. (2022). Cancer-associated fibroblasts in cholangiocarcinoma: Current knowledge and possible implications for therapy. Journal of Clinical Medicine, 11(21), 6498. https://doi.org/10.3390/jcm11216498

Wan, P.K.-T., Ryan, A. J., & Seymour, L. W. (2021). Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Molecular Therapy: The Journal of the American Society of Gene Therapy, 29(5), 1668–1682. https://doi.org/10.1016/j.ymthe.2021.04.015

Article  CAS  PubMed  Google Scholar 

Prasad, V., Fojo, T., & Brada, M. (2016). Precision oncology: Origins, optimism, and potential. The Lancet. Oncology, 17(2), e81–e86. https://doi.org/10.1016/S1470-2045(15)00620-8

Article  PubMed  Google Scholar 

Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401. https://doi.org/10.1038/nrc1877

Article  CAS  PubMed  Google Scholar 

Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews. Cancer, 16(9), 582–598. https://doi.org/10.1038/nrc.2016.73

Article  CAS  PubMed  Google Scholar 

Kennel, K. B., Bozlar, M., De Valk, A. F., & Greten, F. R. (2022). Cancer-associated fibroblasts in inflammation and anti-tumor immunity. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, CCR-22–1031. https://doi.org/10.1158/1078-0432.CCR-22-1031

Shi, X., Young, C. D., Zhou, H., & Wang, X. (2020). Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules, 10(12), 1666. https://doi.org/10.3390/biom10121666

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuzet, S.-E., & Gaggioli, C. (2016). Fibroblast activation in cancer: When seed fertilizes soil. Cell and Tissue Research, 365(3), 607–619. https://doi.org/10.1007/s00441-016-2467-x

Article  CAS  PubMed  Google Scholar 

Li, Z., Low, V., Luga, V., Sun, J., Earlie, E., Parang, B. ,…, Blenis, J. (2022). Tumor-produced and aging-associated oncometabolite methylmalonic acid promotes cancer-associated fibroblast activation to drive metastatic progression. Nature Communications, 13(1), 6239. https://doi.org/10.1038/s41467-022-33862-0

Fang, T., Lv, H., Lv, G., Li, T., Wang, C., Han, Q. ,…, Wang, H. (2018). Tumor-derived exosomal miR-1247–3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nature Communications, 9(1), 191. https://doi.org/10.1038/s41467-017-02583-0

Ammirante, M., Shalapour, S., Kang, Y., Jamieson, C. A. M., & Karin, M. (2014). Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 111(41), 14776–14781. https://doi.org/10.1073/pnas.1416498111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428. https://doi.org/10.1172/JCI39104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marconi, G. D., Fonticoli, L., Rajan, T. S., Pierdomenico, S. D., Trubiani, O., Pizzicannella, J., & Diomede, F. (2021). Epithelial-mesenchymal transition (EMT): The type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells, 10(7), 1587. https://doi.org/10.3390/cells10071587

Article  PubMed  PubMed Central  Google Scholar 

Brabletz, T., Kalluri, R., Nieto, M. A., & Weinberg, R. A. (2018). EMT in cancer. Nature Reviews. Cancer, 18(2), 128–134. https://doi.org/10.1038/nrc.2017.118

Article  CAS  PubMed  Google Scholar 

Ang, H. L., Mohan, C. D., Shanmugam, M. K., Leong, H. C., Makvandi, P., Rangappa, K. S. ,…, Sethi, G. (2023). Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Medicinal Research Reviews, 43(4), 1141–1200. https://doi.org/10.1002/med.21948

Toledo, B., Picon-Ruiz, M., Marchal, J. A., & Perán, M. (2022). Dual role of fibroblasts educated by tumour in cancer behavior and therapeutic perspectives. International Journal of Molecular Sciences, 23(24), 15576. https://doi.org/10.3390/ijms232415576

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adjuto-Saccone, M., Soubeyran, P., Garcia, J., Audebert, S., Camoin, L., Rubis, M. ,…, Tournaire, R. (2021). TNF-α induces endothelial-mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death & Disease, 12(7), 649. https://doi.org/10.1038/s41419-021-03920-4

Potenta, S., Zeisberg, E., & Kalluri, R. (2008). The role of endothelial-to-mesenchymal transition in cancer progression. British Journal of Cancer, 99(9), 1375–1379. https://doi.org/10.1038/sj.bjc.6604662

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez, L., Muñoz-Durango, N., Riedel, C. A., Echeverría, C., Kalergis, A. M., Cabello-Verrugio, C., & Simon, F. (2017). Endothelial-to-mesenchymal transition: Cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine & Growth Factor Reviews, 33, 41–54. https://doi.org/10.1016/j.cytogfr.2016.09.002

Article  CAS  Google Scholar 

Choi, J., Cha, Y. J., & Koo, J. S. (2018). Adipocyte biology in breast cancer: From silent bystander to active facilitator. Progress in Lipid Research, 69, 11–20. https://doi.org/10.1016/j.plipres.2017.11.002

Article  CAS  PubMed  Google Scholar 

Bochet, L., Lehuédé, C., Dauvillier, S., Wang, Y. Y., Dirat, B., Laurent, V. ,…, Muller, C. (2013). Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Research, 73(18), 5657–5668. https://doi.org/10.1158/0008-5472.CAN-13-0530

Iyoshi, S., Yoshihara, M., Nakamura, K., Sugiyama, M., Koya, Y., Kitami, K. ,…, Kajiyama, H. (2021). Pro-tumoral behavior of omental adipocyte-derived fibroblasts in tumor microenvironment at the metastatic site of ovarian cancer. International Journal of Cancer, 149(11), 1961–1972. https://doi.org/10.1002/ijc.33770

Teichert, M., Milde, L., Holm, A., Stanicek, L., Gengenbacher, N., Savant, S. ,…, Augustin, H. G. (2017). Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nature Communications, 8, 16106. https://doi.org/10.1038/ncomms16106

Yao, F., Luo, Y., Liu, Y.-C., Chen, Y.-H., Li, Y.-T., Hu, X.-Y. ,…, Jing, J.-H. (2022). Imatinib inhibits pericyte-fibroblast transition and inflammation and promotes axon regeneration by blocking the PDGF-BB/PDGFRβ pathway in spinal cord injury. Inflammation and Regeneration, 42(1), 44. https://doi.org/10.1186/s41232-022-00223-9

Hosaka, K., Yang, Y., Seki, T., Fischer, C., Dubey, O., Fredlund, E. ,…, Cao, Y. (2016). Pericyte-fibroblast transition promotes tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 113(38), E5618–5627. https://doi.org/10.1073/pnas.1608384113

Tang, P. C.-T., Chung, J. Y.-F., Xue, V. W.-W., Xiao, J., Meng, X.-M., Huang, X.-R. ,…, Lan, H.-Y. (2022). Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 9(1), e2101235. https://doi.org/10.1002/advs.202101235

Huang, H., Wang, Z., Zhang, Y., Pradhan, R. N., Ganguly, D., Chandra, R. ,…, Brekken, R. A. (2022). Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell, 40(6), 656–673.e7. https://doi.org/10.1016/j.ccell.2022.04.011

Biffi, G., & Tuveson, D. A. (2021). Diversity and biology of cancer-associated fibroblasts. Physiological Reviews, 101(1), 147–176. https://doi.org/10.1152/physrev.00048.2019

Article  CAS  PubMed  Google Scholar 

Rimal, R., Desai, P., Daware, R., Hosseinnejad, A., Prakash, J., Lammers, T., & Singh, S. (2022). Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Advanced Drug Delivery Reviews, 189, 114504. https://doi.org/10.1016/j.addr.2022.114504

Article  CAS  PubMed  Google Scholar 

Kim, D., Kim, J. S., Cheon, I., Kim, S. R., Chun, S. H., Kim, J. J. ,…, Ko, Y. H. (2022). Identification and characterization of cancer-associated fibroblast subpopulations in lung adenocarcinoma. Cancers, 14(14), 3486. https://doi.org/10.3390/cancers14143486

Kieffer, Y., Hocine, H. R., Gentric, G., Pelon, F., Bernard, C., Bourachot, B. ,…, Mechta-Grigoriou, F. (2020). Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discovery, 10(9), 1330–1351. https://doi.org/10.1158/2159-8290.CD-19-1384

Mosa, M. H., Michels, B. E., Menche, C., Nicolas, A. M., Darvishi, T., Greten, F. R., & Farin, H. F. (2020). A Wnt-induced phenotypic switch in cancer-associated fibroblasts inhibits EMT in colorectal cancer. Cancer Research, 80(24), 5569–5582. https://doi.org/10.1158/0008-5472.CAN-20-0263

Article  CAS  PubMed  Google Scholar 

Öhlund, D., Handly-Santana, A., Biffi, G., Elyada, E., Almeida, A. S., Ponz-Sarvise, M. ,…, Tuveson, D. A. (2017). Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. The Journal of Experimental Medicine, 214(3), 579–596. https://doi.org/10.1084/jem.20162024

Chen, Z., Zhou, L., Liu, L., Hou, Y., Xiong, M., Yang, Y. ,…, Chen, K. (2020). Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nature Communications, 11(1), 5077. https://doi.org/10.1038/s41467-020-18916-5

Affo, S., Nair, A., Brundu, F., Ravichandra, A., Bhattacharjee, S., Matsuda, M. ,…, Schwabe, R. F. (2021). Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell, 39(6), 866–882.e11. https://doi.org/10.1016/j.ccell.2021.03.012

Biffi, G., Oni, T. E., Spielman, B., Hao, Y., Elyada, E., Park, Y. ,…, Tuveson, D. A. (2019). IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discovery, 9(2), 282–301. https://doi.org/10.1158/2159-8290.CD-18-0710

Zheng, S., Hu, C., Lin, H., Li, G., Xia, R., Zhang, X., … Chen, R. (2022). circCUL2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-κB signaling pathway. Journal of experimental & clinical cancer research: CR, 41(1), 71. https://doi.org/10.1186/s13046-021-02237-6

Picard, F. S. R., Lutz, V., Brichkina, A., Neuhaus, F., Ruckenbrod, T., Hupfer, A. ,…, Huber, M. (2023). IL-17A-producing CD8+ T cells promote PDAC via induction of inflammatory cancer-associated fibroblasts. Gut, gutjnl-2022–327855. https://doi.org/10.1136/gutjnl-2022-327855

Fuentes, N. R., & Taniguchi, C. M. (2023). Turning down oxygen to turn up inflammation in CAFs. Cancer Research, 83(10), 1560–1562. https://doi.org/10.1158/0008-5472.CAN-23-0523

Article  CAS  PubMed  Google Scholar 

Schwörer, S., Cimino, F. V., Ros, M., Tsanov, K. M., Ng, C., Lowe, S. W. ,…, Thompson, C. B. (2023). Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell-derived cytokines. Cancer Research, 83(10), 1596–1610. https://doi.org/10.1158/0008-5472.CAN-22-2316

Elyada, E., Bolisetty, M., Laise, P., Flynn, W. F., Courtois, E. T., Burkhart, R. A. ,…, Tuveson, D. A. (2019). Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discovery, 9(8), 1102–1123. https://doi.org/10.1158/2159-8290.CD-19-0094

Wilson, R. B., Archid, R., & Reymond, M. A. (2020). Reprogramming of mesothelial-mesenchymal transition in chronic peritoneal diseases by estrogen receptor modulation and TGF-β1 inhibition. International Journal of Molecular Sciences, 21(11), 4158. https://doi.org/10.3390/ijms21114158

Article  CAS  PubMed  PubMed Central  Google Scholar 

apCAFs are derived from mesothelial cells and induce regulatory T cells. (2022). Cancer Discovery, 12(7), 1609. https://doi.org/10.1158/2159-8290.CD-RW2022-085

Hu, B., Wu, C., Mao, H., Gu, H., Dong, H., Yan, J. ,…, Long, J. (2022). Subpopulations of cancer-associated fibroblasts link the prognosis and metabolic features of pancreatic ductal adenocarcinoma. Annals of Translational Medicine, 10(5), 262. https://doi.org/10.21037/atm-22-407

Lavie, D., Ben-Shmuel, A., Erez, N., & Scherz-Shouval, R. (2022). Cancer-associated fibroblasts in the single-cell era. Nature Cancer, 3(7), 793–807. https://doi.org/10.1038/s43018-022-00411-z

Article  PubMed  PubMed Central  Google Scholar 

Nurmik, M., Ullmann, P., Rodriguez, F., Haan, S., & Letellier, E. (2020). In search of definitions: Cancer-associated fibroblasts and their markers. International Journal of Cancer, 146(4), 895–905. https://doi.org/10.1002/ijc.32193

留言 (0)

沒有登入
gif