Bussard, K. M., Mutkus, L., Stumpf, K., Gomez-Manzano, C., & Marini, F. C. (2016). Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Research: BCR, 18(1), 84. https://doi.org/10.1186/s13058-016-0740-2
Article CAS PubMed PubMed Central Google Scholar
Rahmanian, M., Seyfoori, A., Ghasemi, M., Shamsi, M., Kolahchi, A. R., Modarres, H. P. ,…, Majidzadeh-A, K. (2021). In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. Journal of Controlled Release: Official Journal of the Controlled Release Society, 334, 164–177. https://doi.org/10.1016/j.jconrel.2021.04.024
Marozzi, M., Parnigoni, A., Negri, A., Viola, M., Vigetti, D., Passi, A. ,…, Rizzi, F. (2021). Inflammation, extracellular matrix remodeling, and proteostasis in tumor microenvironment. International Journal of Molecular Sciences, 22(15), 8102. https://doi.org/10.3390/ijms22158102
Hu, D., Li, Z., Zheng, B., Lin, X., Pan, Y., Gong, P. ,…, Wang, L. (2022). Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Communications (London, England), 42(5), 401–434. https://doi.org/10.1002/cac2.12291
Bartoschek, M., Oskolkov, N., Bocci, M., Lövrot, J., Larsson, C., Sommarin, M. ,…, Pietras, K. (2018). Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nature Communications, 9(1), 5150. https://doi.org/10.1038/s41467-018-07582-3
Bryce, A. S., Dreyer, S. B., Froeling, F. E. M., & Chang, D. K. (2022). Exploring the biology of cancer-associated fibroblasts in pancreatic cancer. Cancers, 14(21), 5302. https://doi.org/10.3390/cancers14215302
Article CAS PubMed PubMed Central Google Scholar
Montori, M., Scorzoni, C., Argenziano, M. E., Balducci, D., De Blasio, F., Martini, F. ,…, Maroni, L. (2022). Cancer-associated fibroblasts in cholangiocarcinoma: Current knowledge and possible implications for therapy. Journal of Clinical Medicine, 11(21), 6498. https://doi.org/10.3390/jcm11216498
Wan, P.K.-T., Ryan, A. J., & Seymour, L. W. (2021). Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Molecular Therapy: The Journal of the American Society of Gene Therapy, 29(5), 1668–1682. https://doi.org/10.1016/j.ymthe.2021.04.015
Article CAS PubMed Google Scholar
Prasad, V., Fojo, T., & Brada, M. (2016). Precision oncology: Origins, optimism, and potential. The Lancet. Oncology, 17(2), e81–e86. https://doi.org/10.1016/S1470-2045(15)00620-8
Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401. https://doi.org/10.1038/nrc1877
Article CAS PubMed Google Scholar
Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews. Cancer, 16(9), 582–598. https://doi.org/10.1038/nrc.2016.73
Article CAS PubMed Google Scholar
Kennel, K. B., Bozlar, M., De Valk, A. F., & Greten, F. R. (2022). Cancer-associated fibroblasts in inflammation and anti-tumor immunity. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, CCR-22–1031. https://doi.org/10.1158/1078-0432.CCR-22-1031
Shi, X., Young, C. D., Zhou, H., & Wang, X. (2020). Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules, 10(12), 1666. https://doi.org/10.3390/biom10121666
Article CAS PubMed PubMed Central Google Scholar
Kuzet, S.-E., & Gaggioli, C. (2016). Fibroblast activation in cancer: When seed fertilizes soil. Cell and Tissue Research, 365(3), 607–619. https://doi.org/10.1007/s00441-016-2467-x
Article CAS PubMed Google Scholar
Li, Z., Low, V., Luga, V., Sun, J., Earlie, E., Parang, B. ,…, Blenis, J. (2022). Tumor-produced and aging-associated oncometabolite methylmalonic acid promotes cancer-associated fibroblast activation to drive metastatic progression. Nature Communications, 13(1), 6239. https://doi.org/10.1038/s41467-022-33862-0
Fang, T., Lv, H., Lv, G., Li, T., Wang, C., Han, Q. ,…, Wang, H. (2018). Tumor-derived exosomal miR-1247–3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nature Communications, 9(1), 191. https://doi.org/10.1038/s41467-017-02583-0
Ammirante, M., Shalapour, S., Kang, Y., Jamieson, C. A. M., & Karin, M. (2014). Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 111(41), 14776–14781. https://doi.org/10.1073/pnas.1416498111
Article CAS PubMed PubMed Central Google Scholar
Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428. https://doi.org/10.1172/JCI39104
Article CAS PubMed PubMed Central Google Scholar
Marconi, G. D., Fonticoli, L., Rajan, T. S., Pierdomenico, S. D., Trubiani, O., Pizzicannella, J., & Diomede, F. (2021). Epithelial-mesenchymal transition (EMT): The type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells, 10(7), 1587. https://doi.org/10.3390/cells10071587
Article PubMed PubMed Central Google Scholar
Brabletz, T., Kalluri, R., Nieto, M. A., & Weinberg, R. A. (2018). EMT in cancer. Nature Reviews. Cancer, 18(2), 128–134. https://doi.org/10.1038/nrc.2017.118
Article CAS PubMed Google Scholar
Ang, H. L., Mohan, C. D., Shanmugam, M. K., Leong, H. C., Makvandi, P., Rangappa, K. S. ,…, Sethi, G. (2023). Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Medicinal Research Reviews, 43(4), 1141–1200. https://doi.org/10.1002/med.21948
Toledo, B., Picon-Ruiz, M., Marchal, J. A., & Perán, M. (2022). Dual role of fibroblasts educated by tumour in cancer behavior and therapeutic perspectives. International Journal of Molecular Sciences, 23(24), 15576. https://doi.org/10.3390/ijms232415576
Article CAS PubMed PubMed Central Google Scholar
Adjuto-Saccone, M., Soubeyran, P., Garcia, J., Audebert, S., Camoin, L., Rubis, M. ,…, Tournaire, R. (2021). TNF-α induces endothelial-mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death & Disease, 12(7), 649. https://doi.org/10.1038/s41419-021-03920-4
Potenta, S., Zeisberg, E., & Kalluri, R. (2008). The role of endothelial-to-mesenchymal transition in cancer progression. British Journal of Cancer, 99(9), 1375–1379. https://doi.org/10.1038/sj.bjc.6604662
Article CAS PubMed PubMed Central Google Scholar
Pérez, L., Muñoz-Durango, N., Riedel, C. A., Echeverría, C., Kalergis, A. M., Cabello-Verrugio, C., & Simon, F. (2017). Endothelial-to-mesenchymal transition: Cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine & Growth Factor Reviews, 33, 41–54. https://doi.org/10.1016/j.cytogfr.2016.09.002
Choi, J., Cha, Y. J., & Koo, J. S. (2018). Adipocyte biology in breast cancer: From silent bystander to active facilitator. Progress in Lipid Research, 69, 11–20. https://doi.org/10.1016/j.plipres.2017.11.002
Article CAS PubMed Google Scholar
Bochet, L., Lehuédé, C., Dauvillier, S., Wang, Y. Y., Dirat, B., Laurent, V. ,…, Muller, C. (2013). Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Research, 73(18), 5657–5668. https://doi.org/10.1158/0008-5472.CAN-13-0530
Iyoshi, S., Yoshihara, M., Nakamura, K., Sugiyama, M., Koya, Y., Kitami, K. ,…, Kajiyama, H. (2021). Pro-tumoral behavior of omental adipocyte-derived fibroblasts in tumor microenvironment at the metastatic site of ovarian cancer. International Journal of Cancer, 149(11), 1961–1972. https://doi.org/10.1002/ijc.33770
Teichert, M., Milde, L., Holm, A., Stanicek, L., Gengenbacher, N., Savant, S. ,…, Augustin, H. G. (2017). Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nature Communications, 8, 16106. https://doi.org/10.1038/ncomms16106
Yao, F., Luo, Y., Liu, Y.-C., Chen, Y.-H., Li, Y.-T., Hu, X.-Y. ,…, Jing, J.-H. (2022). Imatinib inhibits pericyte-fibroblast transition and inflammation and promotes axon regeneration by blocking the PDGF-BB/PDGFRβ pathway in spinal cord injury. Inflammation and Regeneration, 42(1), 44. https://doi.org/10.1186/s41232-022-00223-9
Hosaka, K., Yang, Y., Seki, T., Fischer, C., Dubey, O., Fredlund, E. ,…, Cao, Y. (2016). Pericyte-fibroblast transition promotes tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 113(38), E5618–5627. https://doi.org/10.1073/pnas.1608384113
Tang, P. C.-T., Chung, J. Y.-F., Xue, V. W.-W., Xiao, J., Meng, X.-M., Huang, X.-R. ,…, Lan, H.-Y. (2022). Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 9(1), e2101235. https://doi.org/10.1002/advs.202101235
Huang, H., Wang, Z., Zhang, Y., Pradhan, R. N., Ganguly, D., Chandra, R. ,…, Brekken, R. A. (2022). Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell, 40(6), 656–673.e7. https://doi.org/10.1016/j.ccell.2022.04.011
Biffi, G., & Tuveson, D. A. (2021). Diversity and biology of cancer-associated fibroblasts. Physiological Reviews, 101(1), 147–176. https://doi.org/10.1152/physrev.00048.2019
Article CAS PubMed Google Scholar
Rimal, R., Desai, P., Daware, R., Hosseinnejad, A., Prakash, J., Lammers, T., & Singh, S. (2022). Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Advanced Drug Delivery Reviews, 189, 114504. https://doi.org/10.1016/j.addr.2022.114504
Article CAS PubMed Google Scholar
Kim, D., Kim, J. S., Cheon, I., Kim, S. R., Chun, S. H., Kim, J. J. ,…, Ko, Y. H. (2022). Identification and characterization of cancer-associated fibroblast subpopulations in lung adenocarcinoma. Cancers, 14(14), 3486. https://doi.org/10.3390/cancers14143486
Kieffer, Y., Hocine, H. R., Gentric, G., Pelon, F., Bernard, C., Bourachot, B. ,…, Mechta-Grigoriou, F. (2020). Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discovery, 10(9), 1330–1351. https://doi.org/10.1158/2159-8290.CD-19-1384
Mosa, M. H., Michels, B. E., Menche, C., Nicolas, A. M., Darvishi, T., Greten, F. R., & Farin, H. F. (2020). A Wnt-induced phenotypic switch in cancer-associated fibroblasts inhibits EMT in colorectal cancer. Cancer Research, 80(24), 5569–5582. https://doi.org/10.1158/0008-5472.CAN-20-0263
Article CAS PubMed Google Scholar
Öhlund, D., Handly-Santana, A., Biffi, G., Elyada, E., Almeida, A. S., Ponz-Sarvise, M. ,…, Tuveson, D. A. (2017). Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. The Journal of Experimental Medicine, 214(3), 579–596. https://doi.org/10.1084/jem.20162024
Chen, Z., Zhou, L., Liu, L., Hou, Y., Xiong, M., Yang, Y. ,…, Chen, K. (2020). Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nature Communications, 11(1), 5077. https://doi.org/10.1038/s41467-020-18916-5
Affo, S., Nair, A., Brundu, F., Ravichandra, A., Bhattacharjee, S., Matsuda, M. ,…, Schwabe, R. F. (2021). Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell, 39(6), 866–882.e11. https://doi.org/10.1016/j.ccell.2021.03.012
Biffi, G., Oni, T. E., Spielman, B., Hao, Y., Elyada, E., Park, Y. ,…, Tuveson, D. A. (2019). IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discovery, 9(2), 282–301. https://doi.org/10.1158/2159-8290.CD-18-0710
Zheng, S., Hu, C., Lin, H., Li, G., Xia, R., Zhang, X., … Chen, R. (2022). circCUL2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-κB signaling pathway. Journal of experimental & clinical cancer research: CR, 41(1), 71. https://doi.org/10.1186/s13046-021-02237-6
Picard, F. S. R., Lutz, V., Brichkina, A., Neuhaus, F., Ruckenbrod, T., Hupfer, A. ,…, Huber, M. (2023). IL-17A-producing CD8+ T cells promote PDAC via induction of inflammatory cancer-associated fibroblasts. Gut, gutjnl-2022–327855. https://doi.org/10.1136/gutjnl-2022-327855
Fuentes, N. R., & Taniguchi, C. M. (2023). Turning down oxygen to turn up inflammation in CAFs. Cancer Research, 83(10), 1560–1562. https://doi.org/10.1158/0008-5472.CAN-23-0523
Article CAS PubMed Google Scholar
Schwörer, S., Cimino, F. V., Ros, M., Tsanov, K. M., Ng, C., Lowe, S. W. ,…, Thompson, C. B. (2023). Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell-derived cytokines. Cancer Research, 83(10), 1596–1610. https://doi.org/10.1158/0008-5472.CAN-22-2316
Elyada, E., Bolisetty, M., Laise, P., Flynn, W. F., Courtois, E. T., Burkhart, R. A. ,…, Tuveson, D. A. (2019). Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discovery, 9(8), 1102–1123. https://doi.org/10.1158/2159-8290.CD-19-0094
Wilson, R. B., Archid, R., & Reymond, M. A. (2020). Reprogramming of mesothelial-mesenchymal transition in chronic peritoneal diseases by estrogen receptor modulation and TGF-β1 inhibition. International Journal of Molecular Sciences, 21(11), 4158. https://doi.org/10.3390/ijms21114158
Article CAS PubMed PubMed Central Google Scholar
apCAFs are derived from mesothelial cells and induce regulatory T cells. (2022). Cancer Discovery, 12(7), 1609. https://doi.org/10.1158/2159-8290.CD-RW2022-085
Hu, B., Wu, C., Mao, H., Gu, H., Dong, H., Yan, J. ,…, Long, J. (2022). Subpopulations of cancer-associated fibroblasts link the prognosis and metabolic features of pancreatic ductal adenocarcinoma. Annals of Translational Medicine, 10(5), 262. https://doi.org/10.21037/atm-22-407
Lavie, D., Ben-Shmuel, A., Erez, N., & Scherz-Shouval, R. (2022). Cancer-associated fibroblasts in the single-cell era. Nature Cancer, 3(7), 793–807. https://doi.org/10.1038/s43018-022-00411-z
Article PubMed PubMed Central Google Scholar
Nurmik, M., Ullmann, P., Rodriguez, F., Haan, S., & Letellier, E. (2020). In search of definitions: Cancer-associated fibroblasts and their markers. International Journal of Cancer, 146(4), 895–905. https://doi.org/10.1002/ijc.32193
留言 (0)